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Abstract 

Morphometry is an integral part of most modern morphological studies and the classic morpho-

logical morphometric methods and techniques are often borrowed for research in other fields 

of medicine. The majority of morphometric techniques are derived from Euclidean geometry. 

In the past decades, the principles, parameters and methods of fractal geometry are increasingly 

used in morphological studies. The basic parameter of fractal geometry is fractal dimension. 

Fractal dimension allows you to quantify the degree of filling of space with a certain geometric 

object and to characterize the complexity of its spatial configuration. There are many anatomi-

cal structures with complex irregular shapes that cannot be unambiguously and comprehen-

sively characterized by methods and techniques of traditional geometry and traditional mor-

phometry: irregular linear structures, irregular surfaces of various structures and pathological 

foci, structures with complex branched, tree-like, reticulated, cellular or porous structure, etc. 

Fractal dimension is a useful and informative morphometric parameter that can complement 

existing quantitative parameters to quantify objective characteristics of various anatomical 

structures and pathological foci. Fractal analysis can qualitatively complement existing mor-

phometric methods and techniques and allow a comprehensive assessment of the spatial con-

figuration complexity degree of irregular anatomical structures. The review describes the basic 

principles of Euclidean and fractal geometry and their application in morphology and medicine, 

importance and application of sizes and their derivatives, topological, metric and fractal dimen-

sions, regular and irregular figures in morphology, and practical application of fractal dimen-

sion and fractal analysis in the morphological studies and clinical practice.  
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Morphometry (from the Greek μορφή – 

form, shape and μέτρον – measure, size) is the 

basis of numerous modern morphological 

methods and is an integral part of most modern 

morphological studies. Despite the fact that 

traditional morphology is based on classical 

fundamental descriptive studies of the struc-

ture of various organs and structures, modern 

morphology is gradually moving from qualita-

tive-descriptive to quantitative-morphometric 

studies, and morphometry and statistics have 

become its evidence base. In most modern 

studies, the quantitative parameters of the stud-

ied structures are determined. There are many 

methods and algorithms of morphometry, 

which are used in classical morphology, but  

 also are often borrowed for research in other 

fields of medicine and clinical practice. The di-

agnosis of diseases of various organs and sys-

tems often involves morphometry: determin-

ing the size of cells, organs, structures, etc. The 

choice of methods and algorithms of mor-

phometry primarily depends on the features of 

the spatial configuration of the studied struc-

tures and the aim of the study [1-3]. The ma-

jority of morphometric techniques are derived 

from Euclidean geometry and allow the quan-

tification of anatomical structures by determin-

ing simple geometric parameters: linear meas-

urements, area and volume. Thus, morphome-

try usually involves measuring of the size of 

anatomical structures or pathological foci. In 

addition, the derivatives of the certain sizes are 

calculated: relative or specific sizes, ratios, in-

dices, etc. [1-3]. These quantitative character-

istics provide a lot of useful information and in 

most cases allow to achieve the aim of the 

study. Such morphometry tech niquesare the  
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most informative in the studies of regular 

structures with a geometrically simple shape 

(for example, spherical or prismatic), deter-

mining the size of which is simple and unam-

biguous. However, irregularity is much more 

common among anatomical structures. Irregu-

lar anatomical structures are difficult to assess 

using traditional morphometric techniques, 

and simple quantitative characteristics (sizes 

and their derivatives) do not allow to compre-

hensively characterize the spatial configura-

tion of these structures. 

Thus, traditional quantitative characteris-

tics are not enough to give a comprehensive 

morphological characteristics of irregular ana-

tomical structures, as it is necessary to assess 

the qualitative characteristics – shape and spa-

tial configuration. Can these qualitative char-

acteristics be quantified? The answer to this 

question depends on features of studied object. 

Different indices and indicators are quite use-

ful and informative in the studies of objects 

with a simple shape. For example, the cranial 

index (the ratio of width to length of the skull) 

allows us to determine the craniotype – an in-

dicator that describes the shape of the neu-

rocranium [4] and is quite informative (if we 

know that a skull is brachy, meso- or doli-

chocranial, we clearly and unambiguously un-

derstand the features of skull shape). 

However, it is quite difficult to describe the 

shape of irregular anatomical structures using 

derivative indices calculated on the basis of 

size values. For example, the shape factor (SF) 

may have the same values for structures whose 

spatial configuration differs significantly (Fig. 

1). 

 

 
Figure 1. Figures of different shapes. The 

values of the shape factor (SF): A – circle, SF 

= 1; B – oval, SF = 0.25; C is an irregular 

branched structure, SF ≈ 0.25. 

 
Therefore, in some cases it is not enough to 

determine the sizes and their derivatives  for 

morphometry alone. In these cases, another 

characteristic of geometric shapes and space – 

space dimension or dimensionality – comes in 

handy. 

Spatial dimension (D) is a parameter that 

characterizes the spatial configuration of a ge-

ometric figure (object, structure) and the de-

gree of filling of space with this figure. There 

are topological and metric dimensions [5, 6]. 

Most often, when we mention the spatial di-

mension, we mean the topological dimension, 

which belongs to the traditional (Euclidean) 

geometry [6]. 

The topological dimension (Euclidean di-

mension, Lebesgue dimension) of various ge-

ometric objects has only integer values – 1, 2 

or 3. The topological dimension is equal to the 

minimum number of parameters (coordinates) 

required to unambiguously characterize the 

point of the object in space. For example, in 

order to characterize a point of a straight line, 

it is enough to specify one coordinate, a point 

of a plane – two coordinates, a point of a cube 

– three coordinates. In Euclidean geometry, the 

topological dimension usually coincides with 

the minimum number of linear parameters (n) 

that are needed to characterize an n-dimen-

sional object (for example, length, width, and 

height for three-dimensional objects). Thus, 

the topological dimension of lines that can be 

characterized by only one linear dimension – 

length (one-dimensional linear objects), is 

equal to 1; the dimension of surfaces (planes), 

which in addition to the two linear dimensions 

(length and width) also have their derivative 

value – area (two-dimensional flat objects or 

planes), is equal to 2; and the dimension of 

three-dimensional objects, which in addition to 

the three linear dimensions (length, width and 

height) and area also have a volume, is equal 

to 3 [5-11]. 

The terms "one-dimensional" (1D), "two-

dimensional" (2D) and "three-dimensional" 

(3D) come from the topological dimension. 

Two-dimensional or three-dimensional images 

can be used for morphometry [1-3], and when 

we say that the image is two- or three-dimen-

sional, it means the topology of the images: 

two-dimensional or three-dimensional (Fig. 2, 

Fig. 3). Any anatomical structure can be repre-

sented in a two-dimensional or three-dimen-

sional topology (the topological dimension of  

the space in which a certain structure is repre-

sented is 2 or 3, respectively) [12]. 
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There is also a metric dimension. The val-

ues of metric and topologic dimensions may be 

the same or different. The metric dimension of 

ideal geometric figures coincides with the top-

ological dimension. The metric dimension (D) 

of an ideal line is equal to one, D of the ideal 

plane (surface) is equal to 2, D of the filled 

cube is 3. Such structures fill all available 

space in the corresponding coordinate system: 

one-dimensional, two-dimensional or three-di-

mensional [5-12]. 

However, among anatomical structures and 

pathological foci, such figures are extremely 

rare. Most anatomical structures and different 

foci are irregular, and their metric and topolog-

ical dimensions differ [6]. For example, some 

anatomical structures and their parts are linear 

objects – the outer linear contours of various 

structures and foci, vessels, nerves, fibers, etc. 

But these structures are almost never ideal 

lines with a metric dimension of 1. Much more 

often, linear structures are represented by 

curves that can be wavy, coiled, zigzag, etc. 

These objects are not ideal straight lines, so 

they have a metric dimension greater than one. 

At the same time, they are not planes, so they 

have a dimension less than 2. Thus, they fill 

more space than a straight line, but less than a 

plane (Fig. 2). Taking into account this feature, 

we can conclude that the value of the metric 

dimension of irregular lines can be in the range 

from 1 to 2 [8, 10]. 

 

 
 

Figure 2. Geometric figures with different 

degrees of space filling, two-dimensional to-

pology of images. A is an ideal line that prac-

tically does not fill the space, B is an irregular 

curve, C is an ideal plane that fills all available 

two-dimensional space. 
 

Ideal planes (perfectly flat surfaces), the 

metric dimension of which is 2, are also usu-

ally non-existent in organisms of humans and 

animals. Much more often the surfaces are not  

smooth (they are wavy, rough, etc.) and fill 

more space than the ideal plane, but less than 

the filled cube (Fig. 3). By analogy with irreg-

ular curves, we can conclude that the value of 

the metric dimension of irregular surfaces will 

be in the range from 2 to 3 [8]. 

 

 
 

Figure 3. Geometric figures with different 

degrees of space filling, three-dimensional to-

pology of images. A is an ideal plane (regular 

surface), B is an irregular surface, C is an ideal 

filled cube that fills all available three-dimen-

sional space. 

 

Thus, the metric spatial dimension can be 

not only an integer but also a fractional num-

ber. This dimension is called fractal or frac-

tional (from the Latin fractus – fractional) [5-

15]. Fractal dimension allows you to quantify 

the degree of filling of space with a certain ge-

ometric object and to characterize the com-

plexity of its spatial configuration. Among nat-

ural objects, including anatomical structures, 

in addition to irregular curves and surfaces, 

there are also many objects with complex 

shapes that cannot be unambiguously and com-

prehensively characterized by methods and 

techniques of traditional geometry and tradi-

tional morphometry [6]. These are structures 

with complex branched, tree-like, reticulated, 

cellular or porous structure, etc. [3, 16, 17]. 

Fractal analysis is used to determine the 

fractal dimension of geometrically irregular 

objects, including anatomical structures and 

pathological foci [16, 17]. 

In the study of linear structures, the fractal 

dimension characterizes the degree of spatial 

complexity of their shape (how twisted, tortu-

ous or wavy these linear structures are), so it is 

an informative indicator for quantitative as-

sessment of spatial complexity degree of vari-

ous fibers and other linear structures. 

In addition to irregular linear structures, 

fractal analysis and fractal dimension are rele-

vant for the quantitative characterization of ir-

regular surfaces. These include surfaces formed 

by various membranes, the surfaces of the 

brain cortex and white matter, the outer and 
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inner surfaces of various organs and patholog-

ical foci (tumors, foci of necrosis, fibrosis, 

gliosis, etc.). In this case, such surfaces can be 

represented both in three-dimensional topol-

ogy (on three-dimensional reconstructions) 

and in two-dimensional topology (on two-di-

mensional images) as an anatomical, histolog-

ical, or tomographic sections, projections, etc. 

Irregular surfaces in two-dimensional images 

often look like linear objects, such as linear 

contours of structures and foci and cross-sec-

tions of various membranes. Therefore, it is in-

formative to estimate the spatial configuration 

of linear contours of three-dimensional struc-

tures on two-dimensional images. Determining 

the complexity (tortuosity and irregularity) of 

the contour of tumors can provide information 

about the degree of tumor invasion into the sur-

rounding tissues. Thus, fractal analysis was 

used for quantitative research and interpreta-

tion of mammography results [18]. Determin-

ing the complexity of the spatial configuration 

of the cerebral cortex (entire surface on 3D im-

ages and its linear contour on 2D images) can 

quantify the degree of atrophic changes in the 

brain [19]. In ophthalmology, fractal analysis 

was used to analyze the configuration of the 

Bowman's membrane of cornea [20]. 

Among irregular anatomical structures, 

tree-like branched structures are quite common 

[21] (vascular network of internal organs, 

bronchial tree, duct system of exocrine glands, 

dendritic trees of neurons, cerebellar white 

matter). Fragments of such structures may 

have a network-like, or reticulated configura-

tion (for example, the vascular network is es-

sentially a tree-like structure, but its fragment 

may have a reticulated structure). In addition, 

some structures may have a reticulate structure 

without tree-like branching (for example, a 

network of fibers in fibrous connective or re-

ticular tissue, myeloarchitectonics of the brain 

white matter, etc.). The fractal dimension 

makes it possible to quantify the degree of 

branching of the branched structures and the 

density of the network of the reticulated struc-

tures. 

Fractal analysis in morphology and medi-

cine was often used in the studies of the vascu-

lar network [22, 23]. The fractal dimension of 

the vascular network allows to characterize the 

degree of branching of blood vessels and the  

degree of filling of the space with blood ves-

sels within the studied organ. This method was 

used in the studies of the retinal vessels [24], 

the kidneys arterial tree [25], vessels of lungs 

[26], heart [27] and pituitary gland [28]. The 

vascular network of the brain also has fractal 

properties [29]. A quantitative assessment of 

the superficial vascular network of the cerebel-

lum was performed using fractal analysis of 

anatomical preparations [30]. Fractal analysis 

of brain vessels is used in neuroimaging with 

diagnostic purpose, for example, for analysis 

of the shape complexity degree of arteriove-

nous malformations [31]. 

Fractal analysis was used in the studies of 

the bronchial tree, and the pattern of bronchial 

branching and lung morphogenesis was con-

sidered fractal [32]. 

Fractal analysis was also used to character-

ize the arborization (branching) of the den-

dritic trees of neurons. Various types of neu-

rons were studied by fractal analysis, including 

Purkinje cells [33], pyramidal cells [34], spinal 

cord neurons [35], and retinal nerve cells [36]. 

Fractal analysis was used to classify retinal 

nerve cells according to the degree of branch-

ing of their dendritic tree and functional char-

acteristics [6, 36]. 

Fractal analysis was used in the studies of 

glia cells. This method was used to analyze as-

troglia and revealed morphological changes in 

astrocytes in stroke and dementia [37], re-

vealed significant differences in the fractal di-

mension of different types of astrocytes – pro-

toplasmic and fibrous [38]. Fractal analysis re-

vealed changes in microglia in inflammation of 

nerve tissue, and fractal dimension values were 

used to develop a classification of glia by the 

degree of its activation [39]. 

Fractal analysis was informative in the 

studies of the human cerebellum white matter 

("arbor vitae cerebelli"), which has a complex 

branched tree-like configuration. The cerebel-

lar white matter was studied by fractal analysis 

in our previous work [40, 41] and the works of 

other scientists [42-44]. 

Fractal analysis is also informative and ap-

propriate method for the study of cellular, po-

rous or spongy objects and allows you to quan-

tify their porosity and density by assessing the 

degree of filling of the space by the studied 

structures. For example, fractal analysis was 

used to study the density of the spongy bones 

(most often – the spongy bone tissue of the skull,  

mainly in dentistry and for the diagnosis of os-

teoporosis) [45], dental images [46].  
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Porous structures also include the tissue of 

the respiratory portion of lungs (lung alveoli), 

so the fractal dimension can be an informative 

parameter for the quantitative assessment of 

the lung tissue density. 

In some cases, fractal analysis includes two 

quantitative parameters: in addition to the frac-

tal dimension, the lacunarity index may be de-

termined. The classical fractal analysis deter-

mines the degree of filling of space with a cer-

tain structure and determines fractal dimension 

(areas of space which are occupied by the stud-

ied structure are taken into account). But lacu-

narity index characterizes the degree of filling 

of space with empty areas (lacunae, or areas of 

space which are not occupied by the studied 

structure are taken into account). In other 

words, fractal analysis is performed and the 

fractal dimension is calculated, but for the la-

cunae – space around and inside studied struc-

ture. The lacunarity index usually is deter-

mined during fractal analysis (two parameters 

are determined at the same time – fractal di-

mension and lacunarity index) and makes it 

possible to characterize the "hollowness" of 

the studied structure [47, 48]. Thus, the lacu-

narity index was used in the studies of cellular, 

porous or spongy structures or structures, an 

important characteristic of which is the den-

sity: bone tissue [49], tooth tissue [50] and tu-

mors [51, 52]. 

Different methods, techniques and algo-

rithms of fractal analysis are used in morphol-

ogy. The box counting method or grid method 

is most often used. Less commonly used meth-

ods are caliper method, dilatation method,  

 

mass-radius method, cumulative intersection 

method, grid intercept method and some other 

methods [6, 13-17]. A detailed description of 

the methods of fractal analysis is given in the 

review of the methodology of fractal analysis 

in morphology [53] and in other reviews re-

lated to the use of fractal analysis in various 

fields of medicine [6, 16, 17, 36]. 

Thus, techniques and parameters derived 

from fractal geometry can be used in morpho-

metric studies of various anatomical structures 

of human and animal organisms alongside with 

traditional techniques and indicators derived 

from Euclidean geometry. Fractal dimension is 

a useful and informative morphometric param-

eter that can complement existing quantitative 

parameters to quantify objective characteris-

tics of various anatomical structures and patho-

logical foci. Fractal analysis can qualitatively 

complement existing morphometric methods 

and techniques and allow a comprehensive as-

sessment of the spatial configuration complex-

ity degree of irregular anatomical structures. 
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