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Abstract 

The paper deals with the role of flow cytometry in assessing the biocompatibility and safety 

profiles of nanomaterials. Flow cytometry is a powerful tool to characterize the impact of var-

ious exogenous factors on different cell populations due to its ability to register optical and 

fluorescence characteristics of cells analyzing multiple parameters simultaneously. An over-

view of flow cytometry application for evaluating the redox state of cells, viability and cell 

death modes (apoptosis, necrosis, necroptosis, pyroptosis, autophagy), and pro-inflammatory 

effects of nanoparticles is provided. Flow cytometry offers rapid, informative, quite cost-effec-

tive and multi-angled analysis of safety profiles of nanomaterials taking into account the key 

mechanisms of their toxic action. Recent advances in flow cytometry technologies and the 

availability of commercial automated cell counters make flow cytometry a convenient research 

tool for in vitro nanotoxicology. However, the field requires the development of standardized 

flow cytometry protocols for nanotoxicity testing. 
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Introduction 

Nanomedicine is a rapidly growing field of 

medicine, which implies the application of 

nanotechnologies for medical purposes. In 

general, nanomaterials are defined as materials 

that have at least one dimension ranging from 

1 to 100 nm [1]. Nano-sized materials possess 

unique physicochemical characteristics com-

pared to the large-sized substances of the same 

composition due to quantum effects, higher 

surface area, which increases the surface-to-

mass ratio, and higher reactivity [2]. These 

size-dependent effects of nanostructured mate-

rials make them promising agents in medicine. 

Over the recent years, a plethora of applica-

tions have been suggested for nanomaterials. 

In particular, nanomaterials are used as diag-

nostic and therapeutic agents [3-7], antibacte-

rial agents [8, 9], drug delivery tools [10, 11], 

photodynamic and photothermal agents for the 

treatment of neoplasms [12], contrast agents 

for magnetic resonance imaging [13], gene de-

livery agents [14], wound healing nanodrugs  

 [15, 16], etc. However, the field faces signifi-

cant obstacles and challenges that have to be 

overcome to successfully translate the results 

of experimental research into clinical practice. 

The major issues that limit the progress of na-

nomedicine are targeted delivery, poor bio-

compatibility and safety of nanomaterials, pol-

lution of environment with nanostructured ma-

terials, lack of cost-effectiveness and full-scale 

industrial production, and imperfect govern-

mental regulations [17, 18]. 

Toxicity remains one of the major concerns 

and severe challenges to nanomedicine. It has 

been reported that toxicity of engineered nano-

materials is dependent on multiple factors, in-

cluding composition, size, which affects the 

surface area, shape, surface chemistry and 

charge, dose, protein corona, exposure routes, 

environmental factors, etc. [19, 20]. Hazardous 

effects of nanomaterials are mediated via mul-

tiple mechanisms. However, it has been re-

vealed that reactive oxygen species (ROS) 

generation and oxidative stress are key factors 

of their toxicity [20-22]. It is important to note 

that ROS generation is usually proportional to 

the surface-to-volume ratio, which is associ-

ated with a higher reactivity of nanostructured 

materials [23]. In turn, excessive ROS for-

mation causes oxidative damage to phospho-

lipids, promoting lipid peroxidation, DNA  
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molecules, resulting in genotoxic and carcino-

genic effects of nanomaterials, and proteins. 

Nanomaterials-induced ROS overgeneration 

can be indirect and mediated via NADPH oxi-

dase-dependent or mitochondrial mechanisms 

[24, 25]. In addition to direct ROS-mediated 

damage to macromolecules, nanomaterials-in-

duced oxidative stress triggers apoptosis, ne-

crosis, necroptosis, autophagy, pyroptosis, mu-

tations, inflammation, fibrosis, and cancer [24, 

26]. 

ROS overproduction mediated by nano-

materials can trigger mitogen-activated protein 

kinase (MAPK) and the c-Jun-N-terminal ki-

nase (JNK) signaling, initiating apoptosis [27]. 

Moreover, there is accumulating evidence that 

nanoparticles can enhance apoptosis not only 

via intrinsic, but also extrinsic pathways, in 

particular, through FAS-mediated mechanisms 

[28]. Both pathways result in activation of 

caspases.  

Oxidative stress-mediated pathway has 

been stated to be a key mechanism of nanopar-

ticles-induced necrosis and necroptosis [29]. 

The latter is referred to as a regulated form of 

necrosis. Both necrosis and necroptosis lead to 

similar morphological changes, rupture of cell 

membranes and release of strongly pro-inflam-

matory damage-associated molecular patterns 

(DAMPs) [30].  

Nanomaterials have been demonstrated to 

induce autophagy [31], which is a cellular deg-

radation process crucial for the maintenance of 

homeostasis in response to nutritional and met-

abolic dysregulation [32]. Changes in the re-

dox status induced by nanostructured materials 

inhibit the PI3K/Akt/mTOR signaling path-

way, which results in activation of autophagy 

[33]. The feature of nanoparticles to affect au-

thophagy makes them a promising anticancer 

therapeutic agents, given the role of autophagic 

cell death in cancer.  

Another cell death mode regulated by nano-

materials is pyroptosis, which is a strongly pro-

inflammatory form of caspase-1-dependent 

cell death of mainly macrophages associated 

with pore-mediated leakage of pro-inflamma-

tory cytokines interleukin-1β (IL-1β) and IL-  

 

18 through the cell membrane with the subse-

quent influx of ions and cell lysis [34, 35]. Na-

nomaterials have been shown to induce pyrop-

tosis [36, 37]. Increasing evidence demon-

strates that NLRP3 inflammasome, which plays 

a key role in pyroptosis, responds to changes in 

the redox status, in particular, nanoparticles-

mediated ROS overgeneration [37, 38], which 

implies the importance of ROS-mediated 

mechanisms in nanomaterials-induced pyrop-

tosis activation. 

In addition to pro-oxidant action and induc-

tion of various cell death modes, nanoparticles 

are characterized by immunotoxicity [39, 40]. 

Nanoparticles-triggered ROS-mediated activa-

tion of signaling pathways and transcriptional 

factors, including NF-κB (nuclear factor κB) 

and activator protein (AP)-1, upregulates cyto-

kines such as TNF-α (tumor necrosis factor-α), 

IL-2, IL-6, and IL-8 [26]. It is worth mention-

ing that the pro-inflammatory cytokines en-

hance ROS generation in cells, which causes 

secondary oxidative stress and exacerbation of 

toxic effects [41]. In addition, IL-1β and IL-18 

can be secreted by cells via ROS-associated 

NLRP3 inflammasome pathway activation 

[38].   

Furthermore, ROS-mediated pathways are 

involved in the development of nanoparticles-

induced fibrosis. TGF-β (transforming growth 

factor-β) is known to be a key driver of fibro-

sis, which can act via canonical (Smad-associ-

ated) and non-canonical (non-Smad-associ-

ated) pathways. TGF-β signaling activates fi-

broblasts, epithelial-mesenchymal transition, 

production of extracellular matrix (ECM) 

components, downregulating of ECM-degrad-

ing metalloproteinases and upregulation of tis-

sue inhibitors of metalloproteinases (TIMPs) 

[42]. TGF-β is known to be upregulated in ox-

idative stress [43], which provides evidence 

that nanoscale materials can induce fibrosis via 

ROS/TGF-β pathways. The ability of nanopar-

ticles to induce fibrosis via oxidative 

stress/TGF-β signaling pathway has been 

proven experimentally [44, 45].  

The mechanisms of oxidative stress-medi-

ated nanotoxicity are summarized in Fig. 1.  
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Figure 1. ROS-mediated pathways of nanomaterials-induced toxicity. 

 
All the parameters outlined above can be 

assessed by flow cytometry. Flow cytometry is 

a sophisticated technology, which is used to 

separate and characterize populations of cells 

suspended in a fluid based on their morphol-

ogy, size, granularity and fluorescent parame-

ters using fluorescent dyes and labeled anti-

bodies [46]. Flow cytometry is widely used in 

immunophenotyping, analyzing the expression 

of both surface and intracellular antigens, ROS 

generation, cytokines, the content of intracel-

lular ions, and various cell death forms [47, 

48]. In addition, flow cytometry can be used to 

detect proteins underwent post-translational 

modifications, including phosphorylation, 

which is crucial for analyzing cellular signal-

ing [49]. Flow cytometry has been widely used 

to test the toxicity of various xenobiotics in 

vitro [50-52].  

In this paper, we want to highlight the flow 

cytometry-based approaches to detect major 

toxicity factors of nanomaterials, including ox-

idative stress, apoptosis, necrosis, necroptosis, 

pyroprosis, autophagy and inflammation. 

The major flow cytometric assays used for 

testing nanotoxicity are available in Table 1. 

Cell redox homeostasis and flow cytometry 

Flow cytometry is a common tool to assess 

ROS generation in cellular populations. It has 

been reported that several ROS-sensitive 

probes can be used for this purpose [53]. The 

most common oxidative stress-detecting probes  

 are: 2’,7’-dichlorodihydrofluorescein diacetate 

(H2DCFDA), DHE (dihydroethidium), and 

CellROX green. 

In particular, H2DCFDA is a ROS sensor, 

which is catabolized into H2DCF (dichlorodi-

hydrofluorescein) by esterases inside the cells. 

In turn, H2DCF is converted to a highly fluo-

rescent DCF (dichlorofluorescein) whose fluo-

rescence is registered by flow cytometry. One 

of the advantages of H2DCFDA staining is the 

fact that this dye is sensitive to multiple ROS, 

such as H2O2, hydroxyl radicals, peroxy radi-

cals, and reactive nitrogen species (RNS), such 

as ·NO and ONOO- [54]. H2DCFDA staining 

is used to assess ROS generation in cells ex-

posed to nanoscale materials [55-61]. It is im-

portant to note that H2DCFDA is less sensitive 

to superoxide ion compared to DHE [62]. 

When DHE enters a cell, it interacts with su-

peroxide ion to produce fluorescent ethidium 

and 2-hydroxyethidium [63]. Redox status of 

cells has been reported to be assessed by DHE 

staining with the registration of fluorescence 

by flow cytometry [59, 61, 64, 65]. CellROS 

green dye is used to distinguish oxidatively 

stressed viable cells from the non-stressed 

ones. It is used primarily to detect hydroxyl 

radical. The use of this dye for evaluating the 

impact of nanomaterials on the redox status of 

cells has been reported [66, 67]. Our analysis 

suggests that H2DCFDA staining is more com-

monly used due to the fact that it is less specific 
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Table 1 

Flow cytometry-based approaches used to assess nanotoxicity 

 

Mechanisms of 

nanotoxicity  
Techniques used  Reports on the use in nanotoxicology 

Oxidative stress 

induction 

H2DCFDA staining 

Onishchenko et al., 2021 

Tkachenko et al., 2020 

Kermanizadeh et al., 2018 

Zhang et al., 2018 

Gu et al., 2016 

Han et al., 2014 

Zhao et al., 2013 

DHE staining 

Sadhu et al., 2018 

Gu et al., 2016 

Lehman et al., 2016 

Zhao et al., 2013 

CellROX staining 
Quan et al., 2020 

Sabido et al., 2020 

Apoptosis 

Annexin V/7AAD 

staining  

(both apoptosis and 

necrosis) 

Azizi et al., 2017 

Wu et al., 2017 

Kumar et al., 2015 

Annexin V/PI staining 

(both apoptosis and 

necrosis) 

Vuković et al., 2020 

Yang et al., 2019 

Kai et al., 2011 

Lu et al., 2011 

Cleaved caspase-3 

staining 

Plackal Adimuriyil George et al., 2018 

Ma et al., 2015 

Kai et al., 2011 

 

Mitochondrial 

transmembrane 

potential (Δψm) 

detection 

Plackal Adimuriyil George et al., 2018 

Zhao et al., 2018 

Kai et al., 2011 

Necroptosis 

Combination of PI 

staining with other 

methods 

Niu et al., 2019 

Sonkusre  & Cameotra, 2017 

Pyroptosis 
FLICA caspase 1 

assay 
No data available  

Autophagy 

MDC staining  

 
Liu et al., 2020 

LysoTracker dyes 
Liu et al., 2020 

Wang et al., 2018 

Inflammation 

Changes in leukocyte 

subpopulations 

Michelini et al., 2021 

Hazan-Halevy et al., 2019 

Gamucci et al., 2014 

Hardy et al., 2013 

Kourtis et al., 2013 

Hanley et al., 2009 

Changes in 

intracellular cytokine 

production 

Brzóska et al., 2018 

Bancos et al., 2015 

Strehl et al., 2015 
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and covers more ROS types. Thus, CellROS 

and DHE can be used as additional dyes in 

combination with H2DCFDA to figure out the 

role of particular ROS types in nanomaterials-

induced oxidative stress.  

Cell death modes and flow cytometry 

Flow cytometry is routinely used to detect 

apoptosis of cells. Several types of staining 

have been proposed, which focus on different 

hallmarks of this suicidal cell death mode. The 

commonly applied cytometric assays to ana-

lyze apoptosis are a combined staining with an-

nexin V and 7-aminoactinomycin D (7AAD) 

or propidium iodide (PI), detection of the con-

tent of intracellular active caspases and the mi-

tochondrial transmembrane potential (Δψm) 

[68].  

The cytofluorimetric staining of cells with 

annexin V and 7AAD or PI is based on the 

ability of annexin V to bind phosphatidylserine 

(PS) located on the surface of cells and the ca-

pacity of 7AAD or PI to interact with DNA and 

become fluorescent upon binding. The former 

is used to detect PS externalization, which is a 

hallmark of apoptosis, while the latter indi-

cates the loss of membrane integrity, which oc-

curs in late apoptosis or necrosis. Thus, this 

staining can be used to discriminate viable, 

early apoptotic, late apoptotic/necrotic and 

dead necrotic cells [69]. Both techniques are 

convenient for analyzing nanoparticles-in-

duced apoptosis [70-76]. 

Caspases are intracellular proteases that are 

involved in orchestration of apoptosis. They 

are widely used as markers of apoptosis, espe-

cially active caspase-3 produced both in intrin-

sic and extrinsic apoptotic pathways, including 

for flow cytometry [77]. Identification of 

cleaved caspase-3 in cells treated with 

nanostructured materials is the most common 

and informative approach to detect caspases by 

flow cytometry [76, 78, 79]. 

In normally functioning mitochondria, the 

mitochondrial transmembrane potential (Δψm) 

is created by constant proton pumping from 

matrix to intermembrane space by electron 

transport chain complexes I, III and IV and is 

used to generate ATP by oxidative phosphory-

lation [80]. The depolarized mitochondrial 

membrane is a sign of apoptosis [81], which is 

used as a marker for assessing the influence of 

nanomaterials on apoptosis by flow cytometry 

using primarily a mitochondrial transmembrane 

 potential-sensitive JC-1 probe [76, 78, 82]. Ac-

cording to our estimates, other methods to de-

tect apoptosis by flow cytometry such as anal-

ysis of cytochrome c release or DNA fragmen-

tation are less frequently applied. 

The major technique to detect necrosis is 7-

AAD (or PI) staining, which indicates the loss 

of cell membrane permeability to impermeable 

fluorescent probes. Usually it is combined with 

annexin V staining, since there are no specific 

markers for necrosis, in contrast to necroptosis, 

a programmed lytic cell death. Canonically, 

necroptosis is mediated by RIPK1 (receptor in-

teracting protein kinase 1)–RIPK3 (receptor 

interacting protein kinase 3)–MLKL (pseudo-

kinase mixed lineage kinase domain-like pro-

tein) axis [83]. In particular, TNFα signaling 

recruits RIPK1 and RIPK3 involved in MLKL 

phosphorylation. MLKL compromises the cell 

membrane integrity forming pores, which re-

sults in lytic cell death [84]. 

Flow cytometry can be used to detect 

necroptosis in several ways, including with the 

help of a combination of imaging flow cytom-

etry and annexin V/PI staining, labeled anti-

bodies to RIPK1 and caspase-3 plus cell via-

bility dye staining, and using fluorescently la-

beled antibodies to phospho-MLKL [85, 86]. 

Data on the impact of nanomaterials on 

necroptosis are scarce. In particular, selenium 

nanoparticles were reported to induce it in a 

ROS-dependent manner [87]. In addition, 

necroptosis-inducing features of nanomaterials 

can be detected by a combination of flow cy-

tometry with other methods, e.g., western blot-

ting [88]. 

Pyroptosis, a pro-inflammatory caspase-1-

mediated cell death mode, is detected by flow 

cytometry using mainly fluorescent-labeled in-

hibitors of caspases (FLICA) caspase-1 assays 

[89]. However, this approach is not widely 

used in nanotoxicology researches due to the 

prevalence of immunobloting-, confocal mi-

croscopy- or ELISA-based detection of pyrop-

tosis-associated proteins.  

Several flow cytometric assays have been 

developed to assess autophagy. They include 

determination of the microtubule associated 

protein LC3B and the use of LysoTracker dyes 

or monodansylcadaverine (MDC) staining [90, 

91]. There is accumulating evidence that nano-

materials can modulate the autophagic process 

in cells [92, 93]. However, confocal microscopy  
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is a preferential method for autophagy-detect-

ing assays.  

Inflammation markers and flow cytome-

try 

Flow cytometry is widely used to assess in-

flammation markers [94, 95]. Flow cytometry 

can be applied for evaluating nanomaterials-

mediated changes in leukocyte subsets and in-

tracellular cytokine production. Expectedly, 

both approaches have been reported to be used 

for testing nanotoxicity [96-104], since flow 

cytometry is a generally recognized approach 

to assess inflammation-associated cells and in-

tracellular cytokine expression.  

However, due to the heterogeneity of nano-

materials there are no standard guidelines for 

testing nanotoxicity. In addition, novel screen-

ing methods to assess biological effects of na-

noparticles are required [105]. Recent ad-

vances in flow cytometry, including the ap-

plication of more lasers and development of 

novel fluorochromes, multiplexed analyses 

and the availability of new commercial dyes 

and florescent-labeled antibodies increase the 

scope of opportunities for flow cytometry in 

nanotoxicity testing. Thus, flow cytometry has 

become an essential tool in nanotoxicology 

and since the field is expanding this instrument 

seems promising. 
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