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Abstract 

The paper is devoted to an overview of the current state of research on the modeling of epidemic 
processes. The classification of mathematical and simulation models of epidemic processes is 

carried out. The disadvantages of classical models are revealed. Specific characteristics inherent 

in epidemic processes have been determined, which must be taken into account when constructing 
mathematical and simulation models. A review of deterministic compartment models is carried 

out. Various methods and approaches to the construction of statistical models of epidemic pro-

cesses are considered. The types of problems that are solved using machine learning are analyzed. 
Keywords: epidemics, forecasting, infected organism, infections, mathematical modeling, simu-

lation modeling, susceptible organism. 

 

 

INTRODUCTION 

Epidemics and pandemics of infectious dis-

eases have accompanied the entire history of man-
kind. New emergent infections continue to appear, 

while old infections, which humanity has already 

learned to fight, return. The spread of the SARS-

CoV-2 pathogen, first identified in December 
2021, has led to a pandemic that has been going 

on for almost two years. The current COVID-19 

pandemic has affected all aspects of human life 
and reiterated the importance and need for tools to 

prevent, prepare, detect and respond to epidemics 

and pandemics. Therefore, it is necessary to be 
able to predict epidemics, i.e., to determine the 

probability of occurrence, scale of development of 

epidemics and their consequences in order to de-

velop and justify measures to prevent the spread 
of infectious diseases among the population and 

eliminate the socio-economic consequences cau-

sed by epidemics. An epidemic is a progressive 
spread of an infectious disease among humans that 

significantly exceeds the usual incidence rate in 

the area and can cause an emergency. However, 
the basis of any epidemic is an epidemic process 

‒ the continuous transmission of an infectious dis-

ease agent among humans ‒ from the source of the 

 infectious agent through transmission mecha-

nisms to the susceptible organism. 

Simulation of the epidemic process is a tool 
that is used to study the mechanisms of the spread 

of diseases at the population level, predict a pos-

sible increase in the development of an outbreak, 

and assess the feasibility and rationality of strate-
gies to combat the epidemic. 

The aim of the review paper is to classify mod-

els of epidemic processes and to analyze current 
state of researches in field. 

1. Classification of epidemic process models  

The following types of models of the epidemic 
process are distinguished: 

- a stochastic model is a tool for estimating the 

probability distributions of potential outcomes by 

allowing for random variation in one or more in-
puts over time. Stochastic models depend on ran-

dom variations in the risk of disease occurrence 

and spread; 
- when working with large populations, deter-

ministic mathematical models are often used. In 

the deterministic model, individuals in a popula-
tion are divided into different subgroups, any of 

which represents a specific stage of the epidemic; 

The coefficients of transition from one class to 

another are mathematically defined by deriva-
tives, and the model is described by the corre-

sponding differential equations. When creating 

such models, it is assumed that the function of 
population change is differentiated over time, and 

the epidemic process is deterministic. In other words, 
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population change is calculated using only the 

background history used to estimate the model pa-
rameters. 

The simplest definition of epidemic dynamics 

considers the total population in the system as a 

fixed one, consisting of N individuals and ignor-
ing any other demographic process (migration, 

birth, etc.). One of the simplest possible compart-

ments is the SIS model with two possible transi-
tions: the first labeled S → I, occurs when a sus-

ceptible individual interacts with an infected indi-

vidual and becomes infected. The second transi-
tion, designated I → S, occurs when an infectious 

individual recovers from illness and returns to the 

susceptible pool. 

The SIS model suggests that disease is not im-
mune and people can be infected over and over 

again by undergoing the S → I → S cycle, which 

under certain conditions can be sustained forever. 
Another basic model is the classic three-state 

SIR model. In the SIR model, the I → S transition 

of the SIS process is replaced by I → R, which 

occurs when an infectious individual recovers 
from an illness and is considered to have acquired 

permanent immunity or has been removed (e.g., 

died). 
2. Formalization of epidemic processes  

Classic epidemic models do not take into ac-

count many factors, which reduces the accuracy of 
modeling and the reliability of the dynamics of the 

epidemic process under consideration. 

Among these factors are the following: 

- vertical transmission. In the case of certain 
diseases, such as HIV infection and hepatitis B, 

the offspring of the parents may be born infected. 

This transmission of disease from the ancestor is 
called vertical transmission. The appearance of 

additional members in the category of infected can 

be considered within the framework of the model, 
including the proportion of newborn members in 

the infected cell of the environment [1]; 

- vector transmission. Diseases transmitted 

from person or animal to person through a vector, 
that is, the spread of malaria by mosquitoes or 

Lyme disease through ixodid ticks, are transmitted 

through a vector. In these cases, the infection is 
transmitted from person to vector, and the epi-

demic model should include both, usually requir-

ing much more properties than the direct transmis-

sion model [2]; 
- population heterogeneity; 

- age groups of the population; 

- variable infectivity. As a result of seasonality 
or other influencing factors; 

 - heterogeneity of the environment; 

- immunity acquired through vaccination. 
To eliminate this disadvantage and take into 

account the above factors, it is proposed to use an 

intelligent multi-agent approach to modeling the 

epidemic process of the population dynamics sys-
tem. For this, it is necessary to distinguish a class 

of models of the epidemic process among the 

models of population dynamics. 
The following characteristics are specific of 

the epidemic process: 

- cyclicity (periodicity) of the epidemic process 
is an increase or decrease in the incidence of the 

population, regularly repeating in long-term dy-

namics. Most of the manifestations of cyclicality 

are explained by the infectious-immunological re-
lations of populations. An increase in the suscep-

tible layer due to fertility and migration deter-

mines the formation of a pathogen with higher ep-
idemic potential and an increase in morbidity. The 

activation of the epidemic process, in turn, is ac-

companied by an increase in the layer of immune 

cells, which reduces the epidemic potential of the 
pathogen and determines the decline in the inci-

dence even before the layer of susceptible ones is 

exhausted. Identification of long-term cyclicality 
is important for the development of forecasts of 

morbidity and the development of rational preven-

tive measures; 
- irregular ups and downs in morbidity in long-

term dynamics arise in connection with episodic 

changes in social and natural factors. These 

changes contribute to the formation of pathogens 
with a high epidemic potential, which leads to the 

development of epidemic outbreaks or epidemics. 

Epidemics develop in times of war, after natural 
disasters, with omissions in the conduct of highly 

effective anti-epidemic measures. Any pronoun-

ced migration processes are accompanied by the 
development of epidemics. 

The annual dynamics of the incidence is char-

acterized by regular increases and decreases in the 

incidence, the so-called seasonal and off-season 
periods. The interval that includes the first month 

of a seasonal increase in incidence in one year and 

the month preceding a new seasonal increase in 
incidence the next year is called an epidemic year. 

When considering different epidemic processes, 

different seasonality stands out. For example, they 

usually talk about the winter seasonality of aerosol 
infections and the summer seasonality of intesti-

nal infections, when considering viral marketing 

on the Internet, autumn-spring seasonality is ob-
served, etc. However, the specific manifestations  
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of seasonality are individual for different forms of 

the epidemic process, and within individual 
forms, they are individual for different territories 

and for separate groups of the population in the 

same territory. Seasonality is one of the most in-

telligible manifestations of the phasic nature of the 
development of the epidemic process. It is here 

that interepidemic and epidemic periods asso-

ciated with the phases of reservation of the patho-
gen and its epidemic spread are easily detected. 

In the annual dynamics of morbidity, in addi-

tion to periodically recurring seasonal epidemics, 
epidemics develop that do not have a regular re-

currence or are characterized by one or another 

relatively local manifestation. The limits between 

these concepts are relative since the seasonal epi-
demic is accompanied by an increase in the num-

ber of affected populations in each of them. 

When forecasting, there are three types of fore-
casts: short-, medium- and long-term. At the same 

time, experts studying the epidemic process are 

only interested in forecasting an epidemic out-

break, that is, the period of “epidemic-recession” 
[3]. This is because the dynamics of the process 

can change the distribution rules after an outbreak 

as a result of the anti-epidemic measures taken, as 
well as the natural extinction of the infected 

population. 

3. Deterministic compartment models 

The most popular approach to modeling epi-

demic processes is deterministic models based on 

the use of systems of differential equations and the 

use of compartments that characterize the state of 
objects in the population. The first such type of 

models was applied by W. Kermack and A. Mc-

Kendrick [4–6], who expanded the model of 
R. Ross and H. Hudson [7], and built a model 

based on the types S (susceptible), I (infected) and 

R (recovered) to study the epidemic nature of in-
fectious diseases. The first to study the models of 

epidemic actions on the terrain of Ukraine and the 

USSR were L.A. Rvachev and O.V. Baroyan, who 

used this approach to model the incidence of in-
fluenza [8–9]. 

Compartment models are popular now, and 

many modern studies are based on their extension 
[10]. M.B. Trawicki [11] considers the extension 

of the model, adding the state E (incubation pe-

riod) and additional transitions between the com-

partments. The proposed model takes into account 
the dynamics of life activity with unequal fertility 

and mortality rates, vaccination of infants and 

non-newborns, as well as temporary immunity 
from an infectious disease. In this case, the recovered 

 have only temporary immunity from an infectious 

disease and can potentially go back to the suscep-
tible class. The study authors [12] add states H 

(hospitalized) and D (dead). The model explored 

policies that included large-scale quarantine, tight 

travel controls, monitoring of suspected cases, and 
social distancing. 

The study [13] considers the possibility of 

close contact and the latent course of morbidity. 
The model included four compartments based on 

COVID-19 incidence data in Wuhan and was sup-

ported by data collected from Italy, the United 
Kingdom, and the United States. The model re-

flects the effectiveness of various disease contain-

ment measures through three changing factors: 

contact ratio per capita, which can be reduced by 
social distancing; the likelihood of infection 

through contact with infectious individuals, which 

can be reduced by wearing face masks, maintain-
ing personal hygiene, etc.; and populations of in-

fectious individuals in contact with susceptible 

populations, which can be reduced through quar-

antine. The model was used to predict the best ap-
proach to breaking out of lockdown. 

In [14] the classical model is extended by the 

state Q (quarantine) and V (vaccinated), and the 
spread of coronavirus disease in Saudi Arabia is 

investigated. The mathematical analysis illustrates 

the inalienability, limitation, epidemic equilib-
rium, the existence and uniqueness of endemic 

equilibrium, as well as the basic reproduction 

number of the proposed model. To improve the 

classical model and find little-known parameters, 
the authors applied a data assimilation structure 

based on Kalman filters to estimate state parame-

ters to improve the prediction parameters of the 
model. 

The authors of [15] use step-by-step modeling, 

taking into account the edges, which eliminates 
the assumption that all people have the same fre-

quency of contacts, and partnerships are fleeting, 

having a classical model. The authors derive mod-

els of simple ordinary differential equations that 
reflect social heterogeneity (heterogeneity of con-

tacts) and take into account the effect of the dura-

tion of the partnership. The paper also provides 
a graphical interpretation that makes it easy to de-

rive and communicate the model and apply the 

technique with different assumptions about how 

the frequency of contacts is distributed and how 
long the partnership lasts. 

Study [16] proposes a non-linear model of the 

COVID-19 epidemic that simulates the spread of 
coronavirus influenced by social distancing caused 
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by government measures to halt the spread of 

coronavirus. At the same time, the study focuses 
specifically on the impact of public policies aimed 

at containing the pandemic. [17] investigated the 

effect of travel from other US states on common 

infections in the destination state and found 
a strong inverse correlation of 0.98 between the 

index of contagiousness and the compartment of 

social awareness, that is, people who are no longer 
susceptible to infection. This study uses a com-

partmental metapopulation model to represent the 

correlation between exposure and mobility indices 
and the likelihood of susceptibility to infection. 

A wealth of cellular data has made it possible to 

study many aspects of user mobility, including 

their travel, contact, and residence patterns. 
In [18], a model structure is proposed for pre-

dicting new outbreaks of tuberculosis based on 

compartment models that include properties such 
as, for example, the immigration of infected peo-

ple from countries with a high prevalence. In ad-

dition, the aspect of trained immunity is taken into 

account in the model. Using a mathematical ap-
proach, a system of ordinary differential equations 

that can be developed for several points in time, 

different levels of infection or attack were ob-
tained, which led to different effects of vaccina-

tion, depending on the setting of certain parame-

ters and initial values in the vaccine compart-
ments. 

[19] examines compartment models of epi-

demic processes from the point of view of eco-

nomics. It proposes three distinct areas in which 
economists could contribute or provide infor-

mation to the epidemiological literature: modeling 

the heterogeneity of susceptible populations in 
different dimensions, taking into account the en-

dogeneity of the parameters governing the spread 

of disease, and helping to understand the im-
portance of political economy in disease control. 

Case and death projections based on these models 

are discussed, which went not so much with the 

early projections, but how they adapted to the cur-
rent COVID-19 pandemic. 

In [20], the spread of the incidence of COVID-

19 in Ukraine is investigated using a compartment 
model extended by the F (lethal) state, and [21] 

compares this model with regression methods for 

the territory of Ukraine before vaccination. 

Despite the high popularity of compartment 
models, they have several disadvantages [22], the 

main of which are low accuracy and the complex-

ity of introducing changes into the model. In par-
ticular, the dynamics of the epidemic process lead  

 to an increase in the virulence of the infection, 

which changes the behavior of its spread. This re-
quires changes in the model, and in the case of 

using systems of differential equations, it leads to 

restructuring and calibration of the model from the 

very beginning. 
To improve the accuracy of models of epi-

demic action, some studies are trying to combine 

traditional models with other approaches. For 
example, the study [23] describes a parametric 

bootstrap approach for generating simulated dy-

namic system data for quantifying uncertainty and 
identifying parameters. The confidence intervals 

and root-mean-square errors of the distributions of 

the estimated parameters were calculated to assess 

the identification of the parameters. To demon-
strate this approach, it is applied to a low complex-

ity SEIR model that corresponds to pandemic in-

fluenza, Ebola, and Zika virus applications. In 
[24], deep learning methods were applied as an al-

ternative with less dependence on data to estimate 

the transmission parameters of an individualized 

compartment model to model the dynamics of the 
coronavirus disease epidemic in the United States 

and predict further development. As a result, 

a comparative model was built and a multi-stage 
deep learning methodology was developed to es-

timate the transmission parameters of the model. 

Then the estimated transmission parameters are 
loaded into the model to anticipate the develop-

ment of the COVID-19 epidemic in the United 

States for 35 and 42 days. 

4. Statistical models 

More accurate models of epidemic actions are 

statistical methods for studying time series [25]. 

Let's consider some applications of such ap-
proaches to real problems. 

The most popular statistical method used to 

model epidemic dynamics is the moving average 
method and its derivatives. Thus, the simple mov-

ing average method is applied to modeling 

COVID-19 in Iraq [26], USA [27], Pakistan [28], 

Italy and Spain [29], China [30], etc. Also popular 
are such derivatives of the method as the exponen-

tial moving average [31–33], ARIMA (autore-

gressive moving average) [34–36], and SARIMA 
(seasonal autoregressive moving average) models 

[37–39]. 

Statistical analysis is also used to quickly study 

the epidemic process of emerging diseases or new 
outbreaks of already known diseases [40], which 

is gaining new relevance with the rapid spread of 

COVID-19. Examples of such models have been 
applied to SARS [41–42], H1N1 influenza [43–44], 
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Ebola [45], foot and mouth disease [46], COVID-

19 [47–48], etc. The main difference from previ-
ous tasks is that outbreak assessments are needed 

to determine effective control measures. It is im-

possible to wait for the outbreak to end and to use 

the definitive data on infectious disease virulence 
parameters and associated parameters. Instead, it 

is necessary to conclude early in the outbreak's 

growth. In addition to less data, this also poses the 
risk of biased assessments because people infec-

ted in the early stages of an outbreak are usually 

not presented to the community as a whole. 
5. Machine learning models 

Methods for studying epidemic processes 

based on machine learning are now most accurate. 

Among them are the following tasks. 
Regression. Regression is a predictive ap-

proach for examining the relationship between the 

dependent and independent variables. Separately, 
parametric equations can be evaluated taking into 

account all data. These parameters include mor-

bidity and weather [49], the level of population 

heterogeneity [50], the mortality rate [51], vac-
cination [52], restrictive measures [53], etc. Re-

gression analysis models are used to show or an-

ticipate the relationship between a process and 
what the process might trigger. However, such a 

correlation does not always show causality, so the 

interpretation of such correlations is another im-
portant task. Linear regression [54], logistic re-

gression [55], polynomial regression [56], Ridge 

regression [57], Lasso regression [58], and others 

are used, depending on the types of data and the 
tasks set. 

Classification. The classification task is aimed 

at separating objects according to predefined clas-
ses. In the study of epidemic processes, classifica-

tion methods are applied to various objects: deter-

mination of population groups by behavior [59], 
determination of Spatio-temporal features of the 

epidemic process [60], distribution of available in-

formation about outbreaks [61], identification of 

climatic zones affecting morbidity [62], determi-
nation of geographic zones depending on various 

infectious diseases [63], etc. 

Clustering. The clustering task is aimed at sep-
arating objects in the case when the classes are not 

predefined, and the clusters must be formed ac-

cording to the similarity of certain characteristics 

of the elements. In this case, the number of clus-
ters can be determined by the researcher in ad-

vance, or by the model itself. Also, the researcher 

can determine the features according to which the 
sample needs to be divided independently, or the  

 model will do it on its own. Investigating epide-

mic processes, models, and methods of clustering 
are used to solve such applied problems as the de-

termination of geographic territories based on 

similar signs of the epidemic process [64], the de-

termination of epidemic outbreaks [65], the deter-
mination of groups of carriers of infection [66], 

the determination of the phylogenetic characteris-

tics of individuals of the population [67], determi-
nation of patterns of infection spread [68], etc. 

Dimension reduction. This is the reduction of 

a larger number of features to a smaller one for the 
convenience of their further use. In epidemiologi-

cal diagnostics, this is an extremely urgent task, 

since the data collected by institutions and govern-

ment centers does not depend on their importance 
for modeling. Therefore, dimensionality reduction 

methods help to discard unnecessary data on mor-

bidity [69], reduce computational complexity 
[70], and identify informative signs [71] and fac-

tors influencing the epidemic process [72]. 

Identification of anomalies. The anomaly de-

tection task is designed to detect abnormal devia-
tions from normal cases. The task is akin to clas-

sification, but it has a significant difference: 

anomalies are a rare phenomenon, so there are ei-
ther very few samples on which a model can be 

taught, or there are none at all. Therefore, other 

methods are used for this. In the study of epidemic 
processes, such methods are used to process mor-

bidity data in real-time [73], monitor trends in the 

flow of morbidity data [74], and identify epidemic 

outbreaks [75]. 
Forecasting. The forecasting problem is most 

common in the analysis of epidemic processes. 

Forecasts are calculated taking into account the 
social dynamics of the processes [76], the nature 

of the outbreak [77], geographic features [78], 

trends in epidemic processes in the early stages of 
the outbreak development [79], the impact on the 

population [80], data from social networks (Twit-

ter [81], Facebook [82], etc.), queries from search 

services [83], data from mobile operators [84], 
and many other factors. 

The main disadvantage of machine learning 

methods in the study of epidemic processes is the 
interpretation of the results. It is usually impossi-

ble to identify factors influencing the dynamics of 

morbidity and conduct experiments on the effec-

tiveness of preventive measures. 
6. Further development of epidemic pro-

cesses simulation 

To study epidemic processes and assess the 
influence of factors and the effectiveness of va- 
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rious measures, it is advisable to use agent-based 

simulation. In this approach, objects of the popu-
lation, that is, people, act as agents. Each agent is 

characterized by many states and characteristics. 

The transition between states occurs through 

events, which can be interaction with other agents, 
with the external environment, etc. The interac-

tion between agents and changes in their states af-

fect the overall system, so the introduction of 
changes into the model and its research is much 

easier than using other approaches. 

The disadvantage of the agent-based ap-
proach to modeling epidemic processes is the low 

accuracy of the model. Therefore, a promising 

area is the combination of agent-based models and 

machine learning [85]. 
CONCLUSIONS 

The analysis of models and methods for stud-

ying epidemic processes carried out in the article 
showed that different modeling approaches are 

used for various tasks. At the same time, the great-

est number of shortcomings has the classical de-

terministic compartment models. The greatest ac-
curacy is shown by machine learning methods, but  

 they do not allow conducting experimental studies 

with epidemic processes to identify factors influ-
encing the epidemic process. Therefore, the most 

effective is the combined use of an agent-based 

approach to simulating epidemic processes with 

machine learning methods. 
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