BIOMECHANICAL JUSTIFICATION FOR EXTERNAL FIXATION OF THE PELVIS USING RODS WITH DIFFERENT THREAD HANDS
PDF

Keywords

pelvis, stress-strain state, external fixation, experimental study.

How to Cite

Istomin, A., Kovalyov, S., Zhuravlyov, V., Istomin, D., & Karpinsky , M. (2021). BIOMECHANICAL JUSTIFICATION FOR EXTERNAL FIXATION OF THE PELVIS USING RODS WITH DIFFERENT THREAD HANDS. Inter Collegas, 8(1), 37-46. https://doi.org/10.35339/ic.8.1.37-46

Abstract

Background. External fixation devices (EFD) have found wide application in pelvic fractures treating, but it is not always that strength characteristics of these devices make it possible to realize early rehabilitation.

Objective. the biomechanical justification for external pelvic osteosynthesis with use of rods having different thread hands on the basis of analysis of the stress-strain state (SSS) of the “EFD – pelvis” system and an experimental study of the strength of threaded connections of different rods and the pelvic bone under the effect of alternate cyclic loads.

Materials and Methods. Was analyzed the SSS of the “EFD – pelvis” system verified in an experimental study of the strength of threaded connections of different rods and the pelvic bone under the effect of alternate cyclic loads.

Results. Standing on a single basis in the AVF rods with the same thread, there are torques directed in different directions: on the right - clockwise (screwing in), on the left - counterclockwise (screwing out).A change in the thread direction does not lead to change in the moment values, but directions of the action of the moments of force for the left rod will correspond to the direction of its screwing both in the left- and right-sided one-support position.

Conclusions. Bar-connected rods with a differently directed thread create a reciprocally interlocking structure, which counteracts self-unscrewing. Such a structure significantly increases the strength of connection of an EFD with the pelvic bone and creates conditions for an effective use of the early rehabilitation of patients with pelvic fractures.

 

https://doi.org/10.35339/ic.8.1.37-46
PDF

References

Osterhoff, G., Tiziani, S., Ferguson, S. J., Spreiter, G., Scheyerer, M. J., Spinas, G. L. … Werner, C. M. (2014). Mechanical testing of a device for subcutaneous internal anterior pelvic ring fixation versus external pelvic ring fixation. BMC Musculoskeletal Disorders, 15, 111. doi:10.1186/14712474-15-111.

Lei, J., Dong, P., Li, Z., Zhu, F., Wang, Z., & Cai, X. (2017). Biomechanical analysis of the fixationsystems for anterior column and posterior hemi-transverse acetabular fractures. Acta Orthopaedica et Traumatologica Turcica, 51(3), 248-253. doi: 10.1016/j.aott.2017.02.003.

Zienkiewicz, O. C., & Taylo, R. L. (2005). The Finite Element Method for Solid and Structural Mechanics. Butterworth-Heinemann.

Lee, C. H., Hsu, C. C., & Huang, P. Y. (2017). Biomechanical study of different fixation techniquesfor the treatment of sacroiliac joint injuries using finite element analyses and biomechanical tests. Computers in Biology and Medicine, 87, 250-257. doi: 10.1016/j.compbiomed.2017.06.007.

Ding, S., Chen, F., Huang, J., Zhang, G., Wang, F. … Ruan, Z. (2020). Modified pedicle screwrod versus anterior subcutaneous internal pelvic fixation for unstable pelvic anterior ring fracture: A retrospective study and finite element analysis. Orthopedic Clinical Research. doi: 10.21203/rs.3.rs16488/v1.

Jhou, S. Y., Shih, K. S., Huang, P. S., Lin, F. Y. & Hsu, C. C. (2019). Biomechanical analysis ofdifferent surgical strategies for the treatment of rotationally unstable pelvic fracture using finite element method. Journal of Mechanics in Medicine and Biology, 19(1), 1940015. doi: 10.1142/S0219519419400153.

Li, L., Lu, J., Yang, L., Zhang, K., Jin, J., Sun, G., Wang, X. & Jiang, Q. (2019). Stabilityevaluation of anterior external fixation in patient with unstable pelvic ring fracture: a finite element analysis. Annals of Translational Medicine, 7(14), 303. doi: 10.21037/atm.2019.05.65.

Chen, H., Wu, L., Zheng, R., Liu, Y., Li, Y., & Ding, Z. (2013). Parallel analysis of finite elementmodel controlled trial and retrospective case control study on percutaneous internal fixation for vertical sacral fractures. BMC Musculoskeletal Disorders, 14, 217. doi: 10.1186/1471-2474-14-217.

Liu, L., Fan, S., Chen, Y., Peng, Y., Wen, X., Zeng, D., Song, H., & Jin, D. (2020). Biomechanicsof Anterior Ring Internal Fixation Combined with Sacroiliac Screw Fixation for Tile C3 Pelvic Fractures. Medical Science Monitor : International Medical Journal of Experimental and Clinical Research, 26, e915886. doi: 10.12659/MSM.915886.

Shan, T., Anlin, L., Mingming, Y., Haitao, Y., Anwei, Z., & Shichang, G. (2020). Anterior supraacetabular external fixation for tile C1 pelvic fractures: a digital anatomical study and a finite element analysis. European Journal of Trauma and Emergency Surgery. doi: 10.1007/s00068-020-01517-8.

Shim, V., Gather, A., Hoch, A., Schreiber, D., Grunert, R., Peldschus, S., Josten, C., & Bohme, J.(2017). Development of a Patient-Specific Finite Element Model for Predicting Implant Failure in Pelvic Ring Fracture Fixation. Computational and mathematical methods in medicine, 2017, 9403821. doi: 10.1155/ 2017/9403821.

Bone mechanics handbook (2001). S. C. Cowin (Ed.). CRC Press Reference.

Vidal-Lesso, A., Ledesma-Orozco, E., Daza-Benitez, L., |& Lesso-Arroyo, R. (2014). MechanicalCharacterization of Femoral Cartilage Under Unicompartimental Osteoarthritis. Ingenieria Mecanica Tecnologia Y Desarrollo, 4(6), 239-246.

Savio, L. Y., & Woo, S. D. (2006). Abramowitch, Robert Kilger, Rui Liang. Biomechanics of kneeligaments: injury, healing, and repair. Journal of Biomechanics, 39, 1-20. doi: 10.1016/j.jbiomech.2004.10.025.

Modenese, L., Phillips, A. T., & Bull, A. M. (2011). An open source lower limb model: Hip jointvalidation. Journal of Biomechanics, 44(12), 2185-2193. doi: 10.1016/j.jbiomech.2011.06.019.

Karpinskiy, M. Iu., Zubatii, S. S., Lavinskii, D. V., & Fomin, G. G. (2000). Matematicheskoyeissledovaniye mekhanicheskikh kolebatel'nykh svoystv dlinnykh kostey [Mathematical study of mechanical vibrational properties of long bones]. Medicina i ..., (1), 47-50.

Serdiuk, A. I., Miteleva, Z. M., Kas'yanov, A. I., Mon'ko, O. N., & Karpinskiy, M. Iu. (1994). Razrabotka, sozdaniye i issledovaniye upravlyayemogo vibromassazhnogo ustroystva [Development, creation and research of a controlled vibration massage device]. Proceedings 45th Conference of Polava ISI, Poltava, 214.

Aleksandrov, A. V., Potapov, V. D., & Derzhavin, B. P. (2000). Soprotivleniye materialov [Strengthof materials]. Moscow: Vysshaya shkola.

Birger, I. A., & Iosilevich, G. B. (1990). Rez'bovyye i flantsevyye soyedineniya [Threaded andflange connections.]. Moscow: Mashinostroyeniye.

Blekhman, I. I., Blekhman, L. I., Vasil'kov, V. B., Ivanov, K. S., & Yakimova, K. S. (2012). Obiznose oborudovaniya v usloviyakh vibratsii i udarnykh nagruzok [Wear and tear of machine parts affected by vibration and percussive impacts]. Vestnik nauchno-tekhnicheskogo razvitiya, (11), 3-14. Retnrived from: http://www.vntr.ru/ftpgetfile.php?id=643

Nasledov, A. (2011). SPSS 19: professional'nyy statisticheskiy analiz dannykh [SPSS 19: Professional Statistical Analysis of Data]. Saint Petersburg: Peter.

"Inter Collegas" is an open access journal: all articles are published in open access without an embargo period, under the terms of the CC BY-NC-SA (Creative Commons Attribution ‒ Noncommercial ‒ Share Alike) license; the content is available to all readers without registration from the moment of its publication. Electronic copies of the archive of journals are placed in the repositories of the KhNMU and V.I. Vernadsky National Library of Ukraine.