Plasma and platelets amino acids in coronary artery disease and atrial fibrillation patients – are they linked?
PDF

Keywords

myocardial ischemia
heart rhythm violations
proteins
metabolomics

How to Cite

Melnychuk, I., & Sharayeva, M. (2024). Plasma and platelets amino acids in coronary artery disease and atrial fibrillation patients – are they linked?. Inter Collegas, 11(1). https://doi.org/10.35339/ic.11.1.mes

Abstract

In press

Introduction. The impact of circulating amino acid levels and their combinations on the pathogenesis of ischemic heart disease and atrial fibrillation is a current issue, otherwise, the platelets amino acid spectrum is still under discussion, despite the known pathogenetic role of platelets in these disorders.

Aim. To compare changes in the plasma and platelets amino acid spectrum in patients with coronary artery disease and atrial fibrillation as well as to find their connections.

Materials & Methods. 300 patients were divided into 3 groups: I group – 149 patients with coronary artery disease without arrhythmias, II group – 124 patients with coronary artery disease and atrial fibrillation paroxysm, and the control group – 27 patients without coronary artery disease and arrhythmias. Plasma and platelet amino acid levels were detected by means of ion exchange liquid column chromatography.

Results & Conclusions. In platelets amino acid spectrum, a significant rise in leucine (12.63%), isoleucine (10.73%), and Fishers’ ratio (6.37%); a decrease in threonine (23.05%), valine (30.83%) levels, glycine (32.21%), serine (5.06%), and glycine+serine sum (20.51%) in group 2 patients was found compared with  group 1, p<0.05. In the plasma amino acids spectrum, a significant increase in glutamate, branched-chain amino acids, and Fishers’ ratio and a decrease in glycine in group 2 patients was checked in comparison with group 1, p<0.05. Only 10 moderate strength correlations were revealed between the plasma and platelets amino acid spectrum of investigated patient’s groups. These changes in platelets and plasma amino acids spectrum were not significantly congruent in patients with coronary artery disease and atrial fibrillation. Plasma and platelets amino acid spectrum should be analyzed separately in patients with coronary artery disease and atrial fibrillation for further studies and evaluation of new prognostic markers and pathogenetic clues to their development.

Keywords: myocardial ischemia, heart rhythm violations, proteins, metabolomics.

https://doi.org/10.35339/ic.11.1.mes
PDF

References

Batta A, Hatwal J, Batta A, Verma S, Sharma YP. Atrial fibrillation and coronary artery disease: An integrative review focusing on therapeutic implications of this relationship. World J Cardiol. 2023;15(5):229-43. DOI: 10.4330/wjc.v15.i5.229. PMID: 37274376.

Li X, Liu Z, Jiang X, Xia R, Li Y, Pan X, et al. Global, regional, and national burdens of atrial fibrillation/flutter from 1990 to 2019: An age-period-cohort analysis using the Global Burden of Disease 2019 study. J Glob Health. 2023;13:04154. DOI: 10.7189/jogh.13.04154. PMID: 37988383.

Hindricks G, Potpara T, Dagres N, Arbelo E, Bax JJ, Blomstrom-Lundqvist C, et al. Corrigendum to: 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): The Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur Heart J. 2021;42(40):4194. DOI: 10.1093/eurheartj/ehab648. Erratum for: Eur Heart J. 2021;42(5):373-498. PMID: 34520521.

Knuuti J, Wijns W, Saraste A, Capodanno D, Barbato E, Funck-Brentano C, et al.; ESC Scientific Document Group. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J. 2020;41(3):407-77. DOI: 10.1093/eurheartj/ehz425. Erratum in: Eur Heart J. 2020;41(44):4242. PMID: 31504439.

Zhou P, Waresi M, Zhao Y, Lin HC, Wu B, Xiong N, et al. Increased serum interleukin-6 level as a predictive biomarker for atrial fibrillation: A systematic review and meta-analysis. Rev Port Cardiol (Engl Ed). 2020;39(12):723-8. DOI: 10.1016/j.repc.2020.07.009. PMID: 33234354. [In English, Portuguese].

Arribas-Lopez E, Zand N, Ojo O, Snowden MJ, Kochhar T. The Effect of Amino Acids on Wound Healing: A Systematic Review and Meta-Analysis on Arginine and Glutamine. Nutrients. 2021;13(8):2498. DOI: 10.3390/nu13082498. PMID: 34444657.

Melnychuk IO. Platelets characteristics in patients with coronary artery disease and atrial fibrillation. Modern medical technology. 2023;4(59);5-11. DOI: 10.34287/MMT.4(59).2023.1.

Zhang LL, Lin WH, Di CY, Hou HT, Chen HX, Zhou J, et al. Metabolomics and Biomarkers for Paroxysmal and Persistent Atrial Fibrillation. J Am Heart Assoc. 2024;13(3):e032153. DOI: 10.1161/JAHA.123.032153. PMID: 38293949.

Hu S, Lin Z, Hu MJ, Tan JS, Guo TT, Huang X, Hua L. Causal relationships of circulating amino acids with cardiovascular disease: a trans-ancestry Mendelian randomization analysis. J Transl Med. 2023;21(1):699. DOI: 10.1186/s12967-023-04580-y. PMID: 37805555.

She J, Guo M, Li H, Liu J, Liang X, Liu P, et al. Targeting amino acids metabolic profile to identify novel metabolic characteristics in atrial fibrillation. Clin Sci (Lond). 2018;132(19):2135-46. DOI: 10.1042/CS20180247. PMID: 30190284.

Huang J, Zhang P, Solari FA, Sickmann A, Garcia A, Jurk K, Heemskerk JWM. Molecular Proteomics and Signalling of Human Platelets in Health and Disease. Int J Mol Sci. 2021;22(18):9860. DOI: 10.3390/ijms22189860. PMID: 34576024.

Bayron-Marrero Z, Branfield S, Menendez-Perez J, Nieves-Lopez B, Ospina L, Cantres-Rosario Y, et al. The Characterization and Evaluation of the Soluble Triggering Receptor Expressed on Myeloid Cells-like Transcript-1 in Stable Coronary Artery Disease. Int J Mol Sci. 2023;24(17):13632. DOI: 10.3390/ijms241713632. PMID: 37686440.

McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Bohm M, et al; ESC Scientific Document Group. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) With the special contribution of the Heart Failure Association (HFA) of the ESC. Rev Esp Cardiol (Engl Ed). 2022;75(6):523. DOI: 10.1016/j.rec.2022.05.005. PMID: 35636830. [In English, Spanish].

World Medical Association. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA. 2013;310(20):2191-4. DOI: 10.1001/jama.2013.281053. PMID: 24141714.

Faizi N, Alvi Y. Biostatistics Manual for Health Research. Elsevier; 2023. 290 p.

Mahbub MH, Yamaguchi N, Hase R, Takahashi H, Ishimaru Y, Watanabe R, et al. Plasma Branched-Chain and Aromatic Amino Acids in Relation to Hypertension. Nutrients. 2020 Dec 10;12(12):3791. DOI: 10.3390/nu12123791. PMID: 33322015.

Kouzu H, Katano S, Yano T, Ohori K, Nagaoka R, Inoue T, et al. Plasma amino acid profiling improves predictive accuracy of adverse events in patients with heart failure. ESC Heart Fail. 2021;8(6):5045-56. DOI: 10.1002/ehf2.13572. PMID: 34486830.

Chu C, Liu S, Nie L, Hu H, Liu Y, Yang J. The interactions and biological pathways among metabolomics products of patients with coronary heart disease. Biomed Pharmacother. 2024;173:116305. DOI: 10.1016/j.biopha.2024.116305. PMID: 38422653.

Li DH, Wu Q, Lan JS, Chen S, Huang YY, Wu LJ, et al. Plasma metabolites and risk of myocardial infarction: a bidirectional Mendelian randomization study. J Geriatr Cardiol. 2024;21(2):219-31. DOI: 10.26599/1671-5411.2024.02.002. PMID: 38544498.

Cifuentes F, Morales MA. Functional Implications of Neurotransmitter Segregation. Front Neural Circuits. 2021;15:738516. DOI: 10.3389/fncir.2021.738516. PMID: 34720888.

Gao X, Lee K, Reid MA, Sanderson SM, Qiu C, Li S, et al. Serine Availability Influences Mitochondrial Dynamics and Function through Lipid Metabolism. Cell Rep. 2018;22(13):3507-20. DOI: 10.1016/j.celrep.2018.03.017. PMID: 29590619.

Mesubi OO, Anderson ME. Atrial remodelling in atrial fibrillation: CaMKII as a nodal proarrhythmic signal. Cardiovasc Res. 2016;109(4):542-57. DOI: 10.1093/cvr/cvw002. PMID: 26762270.

Tang Q, Tan P, Ma N, Ma X. Physiological Functions of Threonine in Animals: Beyond Nutrition Metabolism. Nutrients. 2021;13(8):2592. DOI: 10.3390/nu13082592. PMID: 34444752.

Gawałko M, Agbaedeng TA, Saljic A, Muller DN, Wilck N, Schnabel R, et al. Gut microbiota, dysbiosis and atrial fibrillation. Arrhythmogenic mechanisms and potential clinical implications. Cardiovasc Res. 2022;118(11):2415-27. DOI: 10.1093/cvr/cvab292. PMID: 34550344.

Melnychuk IO, Sharayeva ML, Kramarova VN, Lyzogub VH. Platelet amino acid spectrum and gut microbiota, their links in patients with coronary artery disease and atrial fibrillation. Gastroenterology. 2023;57(4):227-33. DOI: 10.22141/2308-2097.57.4.2023.573.

Karadeniz A, Babayigit E, Gorenek B. Could Branched-Chain Amino Acids Be a New Landmark in Metabolic Syndrome and Cardiac Arrhythmias? Can J Cardiol. 2022;38(8):1326. DOI: 10.1016/j.cjca.2022.03.008. PMID: 35306103.

Yang S, Zhao J, Liu X, Wang J, Gu M, Cai C, et al. Metabolomics Profiling Predicts Ventricular Arrhythmia in Patients with an Implantable Cardioverter Defibrillator. J Cardiovasc Transl Res. 2024;17(1):91-101. DOI: 10.1007/s12265-023-10413-6. PMID: 37556036.

Zhang J, Liu Z, Ni Y, Yu Y, Guo F, Lu Y, et al. Branched-chain amino acids promote occurrence and development of cardiovascular disease dependent on triglyceride metabolism via activation of the mTOR/SREBP-1/betatrophin pathway. Mol Cell Endocrinol. 2024;584:112164. DOI: 10.1016/j.mce.2024.112164. PMID: 38262527.

Hamaya R, Mora S, Lawler PR, Cook NR, Buring JE, Lee IM, et al. Association of Modifiable Lifestyle Factors with Plasma Branched-Chain Amino Acid Metabolites in Women. J Nutr. 2022;152(6):1515-24. DOI: 10.1093/jn/nxac056. PMID: 35259270.

Ventura G, Le Plenier S, Neveux N, Sarfati G, Cynober L, Raynaud-Simon A, De Bandt JP. Effect of age, stress and protein supply on plasma amino acids during continuous enteral nutrition; a pragmatic study in rats. Clin Nutr. 2021;40(6):3931-9. DOI: 10.1016/j.clnu.2021.04.045. PMID: 34139466.

Melnychuk IO. Atrial fibrilation in coronary artery disease patients: platelets characteristics and echocardiography indexes. Clinical and Preventive Medicine. 2024;(1):47-56. DOI: 10.31612/2616-4868.1.2024.06.

Huang J, Zhang P, Solari FA, Sickmann A, Garcia A, Jurk K, Heemskerk JWM. Molecular Proteomics and Signalling of Human Platelets in Health and Disease. Int J Mol Sci. 2021;22(18):9860. DOI: 10.3390/ijms22189860. PMID: 34576024.

Song Y, Wei H, Zhou Z, Wang H, Hang W, Wu J, Wang DW. Gut microbiota-dependent phenylacetylglutamine in cardiovascular disease: current knowledge and new insights. Front Med. 2024;18(1):31-45. DOI: 10.1007/s11684-024-1055-9. PMID: 38424375.

Freitas-Dias C, Goncalves F, Martins F, Lemos I, Goncalves LG, Serpa J. Interaction between NSCLC Cells, CD8+ T-Cells and Immune Checkpoint Inhibitors Potentiates Coagulation and Promotes Metabolic Remodeling-New Cues on CAT-VTE. Cells. 2024;13(4):305. DOI: 10.3390/cells13040305. PMID: 38391918.

Huang K, Li Z, He X, Dai J, Huang B, Shi Y, et al. Gut microbial co-metabolite 2-methylbutyrylcarnitine exacerbates thrombosis via binding to and activating integrin α2β1. Cell Metab. 2024;36(3):598-616.e9. DOI: 10.1016/j.cmet.2024.01.014. PMID: 38401546.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.