Fractal analysis of mandibular bone architecture: A novel contour smoothing algorithm for whole-slice quantification
PDF

Keywords

theoretical and experimental medicine
mandible
bone architecture
morphometry
computed tomography
fractal dimension

How to Cite

Stepanenko, O., & Maryenko, N. (2025). Fractal analysis of mandibular bone architecture: A novel contour smoothing algorithm for whole-slice quantification. Inter Collegas, 12(3). https://doi.org/10.35339/ic.2025.12.3.stm

Abstract

In press

Background. The study of mandibular bone architecture is crucial for understanding remodeling, osteogenesis, and resorption processes under normal and pathological conditions. Traditional morphometric methods often rely on limited regions of interest and do not account for the hierarchical self-organization of bone tissue or the complexity of its surface configuration. There is a need for a modified fractal analysis technique focused on assessing the surface complexity of the entire bone slice rather than just its volume filling.

Aim. To develop an original modification of the contour smoothing method for studying mandibular bone architecture on computed tomography images, enabling the analysis of whole bone slices independent of region of interest selection.

Materials & Methods. The methodological study utilized digital cone-beam computed tomography images of the mandibular bone. The fractal dimension was calculated using a custom "contour smoothing" algorithm across six stages with increasing smoothing radii (2, 4, 8, 16, 32 pixels). Statistical data processing included the calculation of linear regression and the coefficient of determination to assess fractal properties; calculations and graphical visualization were performed using Excel 2016 (Microsoft, USA). The study was conducted as part of the initiative research project "Development of clinical and morphological methods of researching the structures of the human body" (State Registration No.0123U100367, 2023–2025).

Research Ethics. The study was approved by the Ethics and Bioethics Committee of Kharkiv National Medical University.

Results. The analysis revealed that the dependence of variables remained linear during the first four stages (smoothing radii 2–8 pixels). At these stages, the bone trabeculae demonstrated monofractal properties. At stages 5 and 6 (radii 16–32 pixels), linearity was disrupted due to the loss of cortical plate contours, leading to a decrease in the approximation coefficient. Consequently, the optimal scaling range for the mandibular bone was determined to be stages 1–4.

Conclusions. The developed contour smoothing algorithm effectively quantifies the complexity of endosteal surface configurations and internal bone contours. This method offers a robust, resolution-independent approach for evaluating bone remodeling and resorption activity, suitable for diagnosing osteoporosis and assessing implant integration.

Keywords: theoretical and experimental medicine, mandible, bone architecture, morphometry, computed tomography, fractal dimension.

https://doi.org/10.35339/ic.2025.12.3.stm
PDF

References

White SC, Rudolph DJ. Alterations of the trabecular pattern of the jaws in patients with osteoporosis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1999;88(5):628-35. DOI: 10.1016/s1079-2104(99)70097-1. PMID: 10556761.

Liu Z, Yan C, Kang C, Zhang B, Li Y. Distributional variations in trabecular architecture of the mandibular bone: an in vivo micro-CT analysis in rats. PLoS One. 2015;10(1):e0116194. DOI: 10.1371/journal.pone.0116194. PMID: 25625431.

Chatterjee M, Faot F, Correa C, Kerckhofs J, Vandamme K. Is the Jaw Bone Micro-Structure Altered in Response to Osteoporosis and Bisphosphonate Treatment? A Micro-CT Analysis. Int J Mol Sci. 2021;22(12):6559. DOI: 10.3390/ijms22126559. PMID: 34207275.

Vitulli I, Fontenele RC, Nascimento EHL, Freitas DQ. Influence of artefacts generated by titanium and zirconium implants in the study of trabecular bone architecture in cone-beam CT images. Dentomaxillofac Radiol. 2022;51(6):20220066. DOI: 10.1259/dmfr.20220066. PMID: 35466693.

Odgaard A. Three-dimensional methods for quantification of cancellous bone architecture. Bone. 1997;20(4):315-28. DOI : 10.1016/s8756-3282(97)00007-0. PMID: 9108351.

Müller R, Rüegsegger P. Micro-tomographic imaging for the nondestructive evaluation of trabecular bone architecture. Stud Health Technol Inform. 1997;40:61-79. PMID: 10168883.

Steiner L, Synek A, Pahr DH. Comparison of different microCT-based morphology assessment tools using human trabecular bone. Bone Rep. 2020;12:100261. DOI: 10.1016/j.bonr.2020.100261. PMID: 32455148.

Mandelbrot BB. The fractal geometry of nature. San Francisco: W.H. Freeman and Company;1982. 470 p.

Geraets WG, van der Stelt PF. Fractal properties of bone. Dentomaxillofac Radiol. 2000;29(3):144-53. DOI: 10.1038/sj/dmfr/4600524. PMID: 10849540.

Feltrin GP, Stramare R, Miotto D, Giacomini D, Saccavini C. Bone fractal analysis. Curr Osteoporos Rep. 2004;2(2):53-8. DOI: 10.1007/s11914-004-0004-4. PMID: 16036083.

Chen Q, Bao N, Yao Q, Li ZY. Fractal dimension: A complementary diagnostic indicator of osteoporosis to bone mineral density. Med Hypotheses. 2018;116:136-8. DOI: 10.1016/j.mehy.2018.05.006. PMID: 29857898.

Franciotti R, Moharrami M, Quaranta A, Bizzoca ME, Piattelli A, Aprile G, Perrotti V. Use of fractal analysis in dental images for osteoporosis detection: a systematic review and meta-analysis. Osteoporos Int. 2021;32(6):1041-52. DOI: 10.1007/s00198-021-05852-3. PMID: 33511446.

Benhamou CL, Poupon S, Lespessailles E, Loiseau S, Jennane R, Siroux V, et al. Fractal analysis of radiographic trabecular bone texture and bone mineral density: two complementary parameters related to osteoporotic fractures. J Bone Miner Res. 2001;16(4):697-704. DOI: 10.1359/jbmr.2001.16.4.697. PMID: 11315997.

Huh KH, Baik JS, Yi WJ, Heo MS, Lee SS, Choi SC, et al. Fractal analysis of mandibular trabecular bone: optimal tile sizes for the tile counting method. Imaging Sci Dent. 2011;41(2):71-8. DOI: 10.5624/isd.2011.41.2.71.

Santos IG, Ramos de Faria F, da Silva Campos MJ, de Barros BÁC, Rabelo GD, Devito KL. Fractal dimension, lacunarity, and cortical thickness in the mandible: Analyzing differences between healthy men and women with cone-beam computed tomography. Imaging Sci Dent. 2023;53(2):153-9. DOI: 10.5624/isd.20230042. PMID: 37405205.

Cavalcante DS, Silva PGB, Carvalho FSR, Quidute ARP, Kurita LM, Cid AMPL, et al. Is jaw fractal dimension a reliable biomarker for osteoporosis screening? A systematic review and meta-analysis of diagnostic test accuracy studies. Dentomaxillofac Radiol. 2022;51(4):20210365. DOI: 10.1259/dmfr.20210365. PMID: 34767466.

Sevimay MA, Gürsu M, Çege MA, Çankal DA, Akarslan Z, Çetiner S. Fractal Dimension Analysis of Mandibular Trabecular Bone in Patients Receiving Antiresorptive Therapy for Osteoporosis and Oncologic Conditions. Diagnostics (Basel). 2025;15(6):748. DOI: 10.3390/diagnostics15060748. PMID: 40150090.

Soylu E, Coşgunarslan A, Çelebi S, Soydan D, Demirbaş AE, Demir O. Fractal analysis as a useful predictor for determining osseointegration of dental implant? A retrospective study. Int J Implant Dent. 2021;7(1):14. DOI: 10.1186/s40729-021-00296-0. PMID: 33629210.

Heo MS, Park KS, Lee SS, Choi SC, Koak JY, Heo SJ, et al.. Fractal analysis of mandibular bony healing after orthognathic surgery. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2002;94(6):763-7. DOI: 10.1067/moe.2002.128972. PMID: 12464904.

Altunok M, Miloğlu Ö, Doğan H, Yılmaz AB, Uyanık A, Çankaya E. Fractal characteristics of the trabecular pattern of the mandible in patients with renal transplantation. Clin Transplant. 2024 ;38(1):e15236. DOI: 10.1111/ctr.15236. PMID: 38289886.

Ersu N, Akyol R, Etöz M. Fractal properties and radiomorphometric indices of the trabecular structure of the mandible in patients using systemic glucocorticoids. Oral Radiol. 2022;38(2):252-60. DOI: 10.1007/s11282-021-00552-4. PMID: 34213705.

Chappard D, Legrand E, Haettich B, Chalès G, Auvinet B, Eschard JP, et al. Fractal dimension of trabecular bone: comparison of three histomorphometric computed techniques for measuring the architectural two-dimensional complexity. J Pathol. 2001;195(4):515-21. DOI: 10.1002/path.970. PMID: 11745685.

Langdahl B, Ferrari S, Dempster DW. Bone modeling and remodeling: potential as therapeutic targets for the treatment of osteoporosis. Ther Adv Musculoskelet Dis. 2016;8(6):225-35. DOI: 10.1177/1759720X16670154. PMID: 28255336.

Maryenko N, Stepanenko O. Quantitative characterization of age-related atrophic changes in cerebral hemispheres: A novel “contour smoothing” fractal analysis method. Translational Research in Anatomy. 2023;33:100263. DOI: 10.1016/j.tria.2023.100263.

Karperien AL, Jelinek HF. Box-Counting Fractal Analysis: A Primer for the Clinician. Adv Neurobiol. 2024;36:15-55. DOI: 10.1007/978-3-031-47606-8_2. PMID: 38468026.

Perrotti V, Aprile G, Degidi M, Piattelli A, Iezzi G. Fractal analysis: a novel method to assess roughness organization of implant surface topography. Int J Periodontics Restorative Dent. 2011;31(6):633-9. PMID: 22140665.

Maryenko NI, Stepanenko OYu. Fractal analysis of anatomical structures linear contours: modified Caliper method vs Box counting method. Reports of Morphology. 2022;28(1):17-26. DOI: 10.31393/morphology-journal-2022-28(1)-03.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.