THE BI-DIRECTIONAL MIGRATION OF A DYE TRACER INJECTED AT THE EDGE OF PRIMARY OR SECONDARY LUNG TUMORS DURING SURGERY (INITIAL STUDY ON 33 PATIENTS AND CLINICAL IMPLICATIONS)
PDF (English)

Як цитувати

Rzechonek, A., Piotr, B., Beata, M.-B., Adamiak, J., Maciej, M., & Wladyslaw, B. (2017). THE BI-DIRECTIONAL MIGRATION OF A DYE TRACER INJECTED AT THE EDGE OF PRIMARY OR SECONDARY LUNG TUMORS DURING SURGERY (INITIAL STUDY ON 33 PATIENTS AND CLINICAL IMPLICATIONS). Inter Collegas, 4(3), 106-119. https://doi.org/10.35339/ic.4.3.106-119

Анотація

Rzechonek A., Blasiak P., Muszynska-Bernhard B., Adamiak  J., Grzegrzółka  J., Majchrzak  M., Budzynski W., Le Pivert  P.

Purpose.  To assess the loco-regional distribution pattern of a blue dye tracer, as a surrogate for a chemotherapeutic agent, injected in the invasion edge of resectable lung tumor; to evaluate the technique efficacy at staining the lung-tumor interface and the metastatic pathways.  Methods. Between November 2014 and September 2015, we enrolled 33 patients (17 women, 16 men; 52-87 years old) presenting with 31 primary lung carcinomas and 2 metastases.  We injected in vivo (n=17) or ex vivo (n=16) the innermost side of the tumor invasion edge with 1.3ml methylene blue dye.  We performed the injection alone (n=12) or combined with a focal freezing (n=21).  We assessed the stain distribution into the invasion-edge, the tumor, the lung or the node(s) at gross and microscopic examination.   Results. At gross examination, we observed a quick, intense staining of the invasion edge, and a concomitant staining of the tumor and the lung. The staining pattern was heterogeneous in the tumor, homogeneous in the invasion edge and the lung irrespective of the focal freezing, tumor type, size, or blood perfusion status. The microscopic examination evidenced the staining of the matrix, vessel lumens, and tumor cells, except for lymph nodes. Conclusions. The inner side of the invasion edge looks a suitable location for directly injecting and distributing the methylene blue tracer within the interstitium and related draining pathways during the resection of primary or secondary lung tumor. Fresh resection specimens are convenient to evaluate new edge-targeting injections techniques for the diagnostic or therapeutic management of cell dissemination during surgery.

Keywords: freezing-assisted injection, lung tumor, methylene blue, surgery, tumor edge injection

 

ДВОСПРЯМОВАНА МІГРАЦІЯ ФАРБУВАЛЬНОЇ РЕЧОВИНИ, ВВЕДЕНОЇ ІНТРАОПЕРАЦІЙНО, ПРИ ПЕРВИННИХ ТА ВТОРИННИХ ПУХЛИНАХ ЛЕГЕНЬ (ПОЧАТКОВЕ ДОСЛІДЖЕННЯ ЗА УЧАСТЮ 33 ПАЦІЄНТІВ ТА КЛІНІЧНІ ВИСНОВКИ)

Жехонек А., Блашяк П., Мушинський-Бернхард Б., Адамяк Я., Гжегжулка Ю., Майхжак М., Будзинскі В., Ле Півер П.

Мета. Оцінити місцево-регіонарні закономірності розподілу метиленового блакитного барвника як замінника хіміотерапевтичного засобу, що вводиться в край резекції при пухлинах легені; оцінити ефективність методики по фарбуванню прикордонного шару пухлини легені та метастатичного поширення. Методи. У період з листопада 2014 по вересень 2015 року, ми набрали 33 пацієнти (17 жінок, 16 чоловіків; 52-87 років), з яких у 31 був первинний рак легені та у 2 - метастатичне ураження легень. Ми вводили 1,3 мл метиленового блакитного у внутрішній край резекції пухлини in vivo (n = 17) або ex vivo (n = 16). Ін'єкція виконувалася або окремо (n = 12), або в комбінації з місцевим заморожуванням (n = 21). Оцінювалося розподіл барвника по краю резекції, пухлини, легені або лімфатичним вузлам за допомогою макро і мікроскопії. Результати. На макроскопічному рівні було відзначено швидке, інтенсивне забарвлення краю резекції з супутнім фарбуванням пухлини та легені. Характер фарбування був різнорідний в пухлині, однорідний по краю резекції та у легені незалежно від застосування місцевого заморожування, типу та розміру пухлини та ступеню перфузії крові. При мікроскопічному дослідженні виявилося фарбування матриксу, судинних просвітів та пухлинних клітин за винятком лімфатичних вузлів. Висновки. Внутрішня сторона краю резекції представляється гарним місцем для безпосереднього введення та поширення барвника метиленового блакитного в інтерстиціальної тканини та дренажних шляхах при резекції первинних та вторинних пухлин легенів. По свіжих резекційних зразках зручно оцінювати нові методики ін'єкцій, спрямованих на край пухлини, для діагностики або терапевтичного контролю поширення клітин під час операції.

Ключові слова: ін'єкції із заморожуванням, пухлина легенів, метиленовий блакитний, операція, ін'єкція в край резекції пухлини

 

ДВУНАПРАВЛЕННАЯ МИГРАЦИЯ КРАСЯЩЕГО ВЕЩЕСТВА, ВВЕДЕННОГО ИНТРАОПЕРАЦИОННО ПРИ ПЕРВИЧНЫХ И ВТОРИЧНЫХ ОПУХОЛЯХ ЛЕГКОГО.  ПЕРВОНАЧАЛЬНОЕ ИССЛЕДОВАНИЕ С УЧАСТИЕМ 33 ПАЦИЕНТОВ И КЛИНИЧЕСКИЕ ВЫВОДЫ

Жехонек А., Блашяк П., Мушинска-Бернхард Б., Адамяк Я., Гжегжулка Ю., Майхжак М., Будзынски В., Ле Пивер П.

Цель. Оценить местно-регионарные закономерности распределения метиленового голубого красящего вещества как заменителя химиотерапевтического средства, вводимого в край резекции при опухолях легкого; оценить эффективность методики по окрашиванию пограничного слоя опухоли легкого и метастатического распространения. Методы. В период с ноября 2014 по сентябрь 2015 года мы набрали 33 пациента (17 женщин, 16 мужчин; 52-87 лет), из которых у 31 была первичный рак легкого и у 2 – метастатическое поражение легких. Мы вводили 1,3 мл метиленового голубого во внутренний край резекции опухоли in vivo (n=17) или ex vivo (n=16). Инъекция выполнялась либо отдельно (n=12), либо в комбинации с местной заморозкой (n=21). Оценивалось распределение красителя по краю резекции, опухоли, легкому или лимфатическим узлам с помощью макро- и микроскопии. Результаты. На макроскопическом уровне было отмечено быстрое, интенсивное окрашивание края резекции с сопутствующим окрашиванием опухоли и легкого. Характер окрашивания был разнородный в опухоли, однородный по краю резекции и в легком независимо от применения местного замораживания, типа и размера опухоли и степени перфузии крови. При микроскопическом исследовании проявилось окрашивание матрикса, сосудистых просветов и опухолевых клеток за исключением лимфатических узлов. Выводы. Внутренняя сторона края резекции представляется подходящим местом для непосредственного введения и распространения красителя метиленового голубого в интерстициальной ткани и дренажных путях при резекции первичных и вторичных опухолей легких. По свежим резекционным образцам удобно оценивать новые методики инъекций, направленных на края опухоли, для диагностики или терапевтического контроля распространения клеток во время операции.

Ключевые слова: инъекции с заморозкой, опухоль легких, метиленовый голубой, операция, инъекция в край резекции опухоли

https://doi.org/10.35339/ic.4.3.106-119
PDF (English)

Посилання

REFERENCES

Kelsey, C. R., Marks, L. B., Hollis, D., Hubbs, J. L., Ready, N. E., D’Amico, T. A., & Boyd, J. A. (2009). Local recurrence after surgery for early stage lung cancer: An 11-year experience with 975 patients. Cancer, 115(22), 5218–5227. http://doi.org/10.1002/cncr.24625

Matsangou, M., Santos, E. S., Raez, L. E., Gomez, J. E., Dinh, V., & Savaraj, N. (2014). Early-stage non-small-cell lung cancer: Overview of adjuvant chemotherapy and promising advances. Lung Cancer Management, 3(1), 85–99.

Coffey, J. C., Wang, J. H., Smith, M. J. F., Bouchier-Hayes, D., Cotter, T. G., & Redmond, H. P. (2003). Excisional surgery for cancer cure: Therapy at a cost. Lancet Oncology, 4(12), 760–768. http://doi.org/10.1016/S1470-2045(03)01282-8

Polzer, B., & Klein, C. A. (2013). Metastasis Awakening: The challenges of targeting minimal residual cancer. Nature Medicine, 19(3), 274–275. http://doi.org/10.1038/nm.3121

Ceelen, W., Pattyn, P., & Mareel, M. (2014). Surgery, wound healing, and metastasis: Recent insights and clinical implications. Critical Reviews in Oncology/Hematology. http://doi.org/10.1016/j.critrevonc.2013.07.008

Ceelen, W. P., Morris, S., Paraskeva, P., & Pattyn, P. (2007). Surgical trauma, minimal residual disease and locoregional cancer recurrence. Cancer Treatment and Research, 134, 51–69. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/17633047

Baba, T., Uramoto, H., Kuwata, T., Takenaka, M., Chikaishi, Y., Oka, S., … Tanaka, F. (2013). Intrapleural chemotherapy improves the survival of non-small cell lung cancer patients with positive pleural lavage cytology. Surgery Today, 43(6), 648–653. http://doi.org/10.1007/s00595-012-0281-y

Liang, Y., & Wakelee, H. A. (2013). Adjuvant chemotherapy of completely resected early stage non-small cell lung cancer (NSCLC). Translational Lung Cancer Research, 2(5), 403–410. http://doi.org/10.3978/j.issn.2218-6751.2013.07.01

Sawabata, N., Kitamura, T., Nitta, Y., Taketa, T., Ohno, T., Fukumori, T., … Nakamura, T. (2017). Lung cancer biopsy dislodges tumor cells into circulating blood. Journal of Cancer Metastasis and Treatment, 3(1), 16. http://doi.org/10.20517/2394-4722.2016.67

Gaikwad, A., Souza, C. A., Inacio, J. R., Gupta, A., Sekhon, H. S., Seely, J. M., … Gomes, M. M. (2014). Aerogenous metastases: a potential game changer in the diagnosis and management of primary lung adenocarcinoma. American Journal of Roentgenology, 203(6), W570–W582. http://doi.org/10.2214/AJR.13.12088

Pandya, P., Orgaz, J. L., & Sanz-Moreno, V. (2016). Modes of invasion during tumour dissemination. Molecular Oncology, 11, 1–23. http://doi.org/10.1002/1878-0261.12019

Wiig, H., Tenstad, O., Iversen, P., Kalluri, R., Bjerkvig, R., Freitas, I., … Haggerty, A. (2010). Interstitial fluid: the overlooked component of the tumor microenvironment? Fibrogenesis & Tissue Repair, 3(1), 12. http://doi.org/10.1186/1755-1536-3-12

Celikoglu, F., Celikoglu, S. I., & Goldberg, E. P. (2010). Intratumoural chemotherapy of lung cancer for diagnosis and treatment of draining lymph node metastasis. Journal of Pharmacy and Pharmacology, 62(3), 287–293. http://doi.org/10.1211/jpp/62.03.0001

Mehta, H. J., Begnaud, A., Penley, A. M., Wynne, J., Malhotra, P., Fernandez-Bussy, S., … Jantz, M. A. (2015). Restoration of Patency to Central Airways Occluded by Malignant Endobronchial Tumors Using Intratumoral Injection of Cisplatin. Annals of the American Thoracic Society, 12(9), 1345–50. http://doi.org/10.1513/AnnalsATS.201503-131OC

Goldberg, E. P., Hadba, A. R., Almond, B. a, & Marotta, J. S. (2002). Intratumoral cancer chemotherapy and immunotherapy: opportunities for nonsystemic preoperative drug delivery. The Journal of Pharmacy and Pharmacology, 54(2), 159–180. http://doi.org/10.1211/0022357021778268

Tempany, C. M. C., Jayender, J., Kapur, T., Bueno, R., Golby, A., Agar, N., & Jolesz, F. A. (2015). Multimodal imaging for improved diagnosis and treatment of cancers. Cancer, 121(6), 817–27. http://doi.org/10.1002/cncr.29012

Hachey, K. J., & Colson, Y. L. (2014). Current Innovations in Sentinel Lymph Node Mapping for the Staging and Treatment of Resectable Lung Cancer. Seminars in Thoracic and Cardiovascular Surgery, 26(3), 201–209. http://doi.org/10.1053/j.semtcvs.2014.09.001

Meyer, A., Cheng, C., Antonescu, C., Pezzetta, E., Bischof-Delaloye, A., & Ris, H.-B. (2007). Successful migration of three tracers without identification of sentinel nodes during intraoperative lymphatic mapping for non-small cell lung cancer. Interactive Cardiovascular and Thoracic Surgery, 6(2), 214–8. http://doi.org/10.1510/icvts.2006.141911

Mehta, H. J., Begnaud, A., Penley, A. M., Wynne, J., Malhotra, P., Fernandez-Bussy, S., … Jantz, M. A. (2015). Treatment of isolated mediastinal and hilar recurrence of lung cancer with bronchoscopic endobronchial ultrasound guided intratumoral injection of chemotherapy with cisplatin. Lung Cancer, 90(3), 542–547. http://doi.org/10.1016/j.lungcan.2015.10.009

Stylianopoulos, T., Martin, J. D., Snuderl, M., Mpekris, F., Jain, S. R., & Jain, R. K. (2013). Co-evolution of solid stress and interstitial fluid pressure in tumors during progression: Implications for vascular collapse. Cancer Research, 73(13), 3833–3841. http://doi.org/10.1158/0008-5472.CAN-12-4521

Shentu, Y., Zhang, L., Gu, H., Mao, F., Cai, M., Ding, Z., & Wang, Z. (2014). A new technique combining virtual simulation and methylene blue staining for the localization of small peripheral pulmonary lesions. BMC Cancer, 14, 79. http://doi.org/10.1186/1471-2407-14-79

Lim, E. J., Oak, C. H., Heo, J., & Kim, Y. H. (2013). Methylene blue-mediated photodynamic therapy enhances apoptosis in lung cancer cells. Oncology Reports, 30(2), 856–862. http://doi.org/10.3892/or.2013.2494

Shafiei, S., Bagheri, R., Sadri, K., Jafarian, A. H., Attaran, D., Lari, S. M., & Basiri, R. (2015). Sentinel node mapping for intra-thoracic malignancies: systematic review of the best available evidence, 2(2), 52–57. Retrieved from http://rcm.mums.ac.ir/article_3865_556.html

He, X., Xiao, Y., Zhang, X., Du, P., Zhang, X., Li, J., … Le Pivert, P. (2016). Percutaneous Tumor Ablation: Cryoablation Facilitates Targeting of Free Epirubicin-Ethanol-Ioversol Solution Interstitially Co-injected in a Rabbit VX2 Tumor Model. Technology in Cancer Research & Treatment, 15(4), 597–608. http://doi.org/10.1177/1533034615593855

Le Pivert, P. J., Morrison, D. R., Haddad, R. S., Renard, M., Aller, A., Titus, K., & Doulat, J. (2009). Percutaneous tumor ablation: microencapsulated echo-guided interstitial chemotherapy combined with cryosurgery increases necrosis in prostate cancer. Technology in Cancer Research & Treatment, 8(3), 207–216. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/19445538

Vignaud, J.-M., Ménard, O., Weinbreck, N., Siat, J., Borrelly, J., Marie, B., … Martinet, Y. (2006). Evaluation of the spatial diffusion of methylene blue injected in vivo by bronchoscopy into non-small cell lung carcinoma. Respiration; International Review of Thoracic Diseases, 73(5), 658–63. http://doi.org/10.1159/000094392

Boucher, Y., Baxter, L. T., & Jain, R. K. (1990). Interstitial Pressure Gradients in Tissue-isolated and Subcutaneous Tumors: Implications for Therapy. Cancer Research, 50(15), 4478–4484. Retrieved from http://cancerres.aacrjournals.org/content/50/15/4478

Giraud, P., Antoine, M., Larrouy, A., Milleron, B., Callard, P., De Rycke, Y., … Touboul, E. (2000). Evaluation of microscopic tumor extension in non-small-cell lung cancer for three-dimensional conformal radiotherapy planning. International Journal of Radiation Oncology, Biology, Physics, 48(4), 1015–24. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11072158

Munson, J. M., & Shieh, A. C. (2014). Interstitial fluid flow in cancer: implications for disease progression and treatment. Cancer Management and Research, 6, 317–328. http://doi.org/10.2147/CMAR.S65444

Soltani, M., Chen, P., Babich, J., Kierstead, D., & Graham, W. (2011). Numerical Modeling of Fluid Flow in Solid Tumors. PLoS ONE, 6(6), e20344. http://doi.org/10.1371/journal.pone.0020344

Polacheck, W. J., Charest, J. L., & Kamm, R. D. (2011). Interstitial flow influences direction of tumor cell migration through competing mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 108(27), 11115–20. http://doi.org/10.1073/pnas.1103581108

Estourgie, S. H., Nieweg, O. E., Valdés Olmos, R. A., Th Rutgers, E. J., & Kroon, B. B. R. (2003). Intratumoral versus intraparenchymal injection technique for lymphoscintigraphy in breast cancer. Clinical Nuclear Medicine, 28(5), 371–374. http://doi.org/10.1097/01.RLU.0000063409.68758.D4

McGuire, S., & Yuan, F. (2001). Quantitative analysis of intratumoral infusion of color molecules. American Journal of Physiology - Heart and Circulatory Physiology, 281(2), H715–H721. Retrieved from http://ajpheart.physiology.org/content/281/2/H715

Jain, R. K., Martin, J. D., & Stylianopoulos, T. (2014). The role of mechanical forces in tumor growth and therapy. Annual Review of Biomedical Engineering, 16, 321–346. http://doi.org/10.1146/annurev-bioeng-071813-105259

Hohenforst-Schmidt, W., Zarogoulidis, P., Darwiche, K., Vogl, T., Goldberg, E. P., Huang, H., … Brachmann, J. (2013). Intratumoral chemotherapy for lung cancer: re-challenge current targeted therapies. Drug Design, Development and Therapy, 7, 571–83. http://doi.org/10.2147/DDDT.S4639336-

Zhang, X.Y., Luck, J., Dewhirst, M. W., & Yuan, F. (2000). Interstitial hydraulic conductivity in a fibrosarcoma. American Journal of Physiology - Heart and Circulatory Physiology, 279(6).

Le Pivert, P. J. (2017) Translational Cryosurgery in Lung Tumor Therapy, Cryoimmunology, Cryochemotherapy, Nanocryosurgery: basics and applications. In H. Wang, K. Xu, P. Littrup, (Eds.) Cryosurgery for Lung Cancer (to be published). Wien, New York: Springer. Retrieved from https://www.researchgate.net/publication/305620390

Maiwand, M. O., & Asimakopoulos, G. (2004). Cryosurgery for lung cancer: clinical results and technical aspects. Technology in Cancer Research & Treatment, 3(2), 143–50. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/15059020

Polk, W., Fong, Y., Karpeh, M., & Blumgart, L. H. (1995). A technique for the use of cryosurgery to assist hepatic resection. Journal of the American College of Surgeons, 180(2), 171–176.

Hassid, Y., Furman-Haran, E., Margalit, R., Eilam, R., & Degani, H. (2006). Noninvasive magnetic resonance imaging of transport and interstitial fluid pressure in ectopic human lung tumors. Cancer Research, 66(8), 4159–4166. http://doi.org/10.1158/0008-5472.CAN-05-3289

Gatenby, R. A., Gawlinski, E. T., Gmitro, A. F., Kaylor, B., & Gillies, R. J. (2006). Acid-mediated tumor invasion: A multidisciplinary study. Cancer Research, 66(10), 5216–5223. http://doi.org/10.1158/0008-5472.CAN-05-4193

Trédan, O., Galmarini, C. M., Patel, K., & Tannock, I. F. (2007). Drug resistance and the solid tumor microenvironment. Journal of the National Cancer Institute, 99(19), 1441–1454. http://doi.org/10.1093/jnci/djm135

Raghunand, N., & Gillies, R. J. (2000). pH and drug resistance in tumors. Drug Resistance Updates : Reviews and Commentaries in Antimicrobial and Anticancer Chemotherapy, 3(1), 39–47. http://doi.org/10.1054/drup.2000.0119

Morimoto, N., Isoda, N., Takaoka, Y., Hirosawa, T., Watanabe, S., Otake, T., … Yamamoto, H. (2017). Short-Term Results of Laparoscopic Radiofrequency Ablation Using a Multipolar System for Localized Hepatocellular Carcinoma. Liver Cancer, 6(2), 137–145. http://doi.org/10.1159/000450925

"Inter Collegas" є журналом відкритого доступу: всі статті публікуються у відкритому доступі без періоду ембарго, на умовах ліцензії Creative Commons Attribution ‒ Noncommercial ‒ Share Alike (CC BY-NC-SA, з зазначенням авторства ‒ некомерційна ‒ зі збереженням умов); контент доступний всім читачам без реєстрації з моменту його публікації. Електронні копії архіву журналів розміщені у репозиторіях ХНМУ та Національної бібліо­теки ім. В.І. Вернадського.