Neuroprotective mechanisms of physical activity


physical activity
brain-derived neurotrophic factor

How to Cite

Melnyk, O., Botanevych, Y., Sorokina, N., Lischyshyn , H., & Petruk, I. (2023). Neuroprotective mechanisms of physical activity. Inter Collegas, 10(2).


In press

It is known that the adaptive capabilities of the brain are not unlimited and deteriorate over time. It is a proven fact that aging is one of the main risk factors for the occurrence of neurodegenerative disorders, mainly due to poorer immune protection and recovery of the body. Therefore, scientists have recently been paying attention to the search for additional methods of management of neurodegenerative pathologies for their more effective prevention. Among the identified methods, special attention is paid to physical activity, the results of which investigation indicate a powerful neuroprotective effect, however, the mechanisms of this phenomenon have not yet been conclusively proven. Therefore, in this systematic review, the main neuroprotective mechanisms of exercise were described and demonstrated using the methods of analysis and systematization of literature sources from PubMed, Web of Science, Elsevier, and Google Scholar databases. As a result of the study, it was established that a significant protective effect on the nervous system is achieved thanks to neuroendocrine regulation due to the influence on the hypothalamic-pituitary-adrenal axis. Another factor is the development of stress due to physical exertion, although the mechanisms of this phenomenon are still a subject of debate among scientists. However, it was proved that the consequence of such influence is the optimization of the work of neurotransmitters, in particular, in the locus coeruleus, as well as the activation of the antioxidant system, which allows to disrupt the number of free radicals in the brain structures. Relatively new is the role of moderate-intensity exercise in increasing the expression of neurotrophins – key factors of neuroplasticity, in particular BDNF, IGF-1, NGF and VEGF, which expands the possibilities of potential effects on the brain and its neuroprotective properties. The obtained results allow the use of physical activity as an additional therapy in the treatment and prevention of neurodegenerative pathologies, however, further practical research is needed to find a specific algorithm and schedule of classes with high application efficiency.

Keywords: physical activity, neurotrophins, neuroprotection, brain-derived neurotrophic factor, antioxidants.


Muresanu F, Buia M, Pintea D, Craiovan S, Moldovan F, Opincariu I, et al. Neuroprotection and neuroplasticity in craniocerebelar trauma. Revista Romana de Neurologie [Romanian Journal of Neurology]. 2007;6:154-65. DOI: 10.37897/rjn.2007.4.2.

Pedersen BK. Physical activity and muscle-brain crosstalk. Nat Rev Endocrinol. 2019;15(7):383-92. DOI: 10.1038/s41574-019-0174-x. PMID: 30837717.

Soria Lopez JA, Gonzalez HM, Leger GC. Alzheimer's disease. Handb Clin Neurol. 2019;167:231-55. DOI: 10.1016/B978-0-12-804766-8.00013-3. PMID: 31753135.

Livingston G, Huntley J, Sommerlad A, Ames D, Ballard C, Banerjee S, et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet Commissions. 2020;396:413-46. DOI: 10.1016/S0140-6736(20)30367-6. PMID: 32738937.

Fedotova M, Panfilova H, Tsurikova O, Blazhiievska O. The study of epidemiology of dementia and Alzgeimer’s disease in Ukraine. 2021;102:50-8. DOI: 10.24959/nphj.21.58.

Anand A, Ghani A, Sharma K, Kaur G, Khosla R, Devi C, et al. War-Related Mental Health Issues and Need for Yoga Intervention Studies: A Scoping Review. Int J Yoga. 2021;14(3):175-87. DOI: 10.4103/ijoy.ijoy_60_21. PMID: 35017859.

Graham NS, Sharp DJ. Understanding neurodegeneration after traumatic brain injury: from mechanisms to clinical trials in dementia. J Neurol Neurosurg Psychiatry. 2019 Nov;90(11):1221-33. DOI: 10.1136/jnnp-2017-317557. PMID: 31542723

Singaravelu Jaganathan K, Sullivan KA. Traumatic Brain Injury Rehabilitation: An Exercise Immunology Perspective. Exerc Immunol Rev. 2022;28:90-7. PMID: 35452396.

Mahalakshmi B, Maurya N, Lee SD, Bharath Kumar V. Possible Neuroprotective Mechanisms of Physical Exercise in Neurodegeneration. Int J Mol Sci. 2020;21(16):5895. DOI: 10.3390/ijms21165895. PMID: 32824367;

Liegro CM, Schiera G, Proia P, Di Liegro I. Physical Activity and Brain Health. Genes (Basel). 2019;10(9):720. DOI: 10.3390/genes10090720. PMID: 31533339.

Di Raimondo D, Rizzo G, Musiari G, Tuttolomondo A, Pinto A. Role of Regular Physical Activity in Neuroprotection against Acute Ischemia. Int J Mol Sci. 2020;21(23):9086. DOI: 10.3390/ijms21239086. PMID: 33260365;

Page MJ, Moher D, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD et al. PRISMA 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews. BMJ. 2021;372:n160. DOI: 10.1136/bmj.n160. PMID: 33781993.

Allen K, Anderson M, Balady G, Berry M, Blissmer, Bonzheim K, et al ACSM's Guidelines for Exercise Testing and Prescription, 9th Edition. Baltimore: Wolters Kluwer; Philadelphia Lippincott Williams & Wilkins; 2014. 109p. Available at:

Li J, Siegrist J. Physical activity and risk of cardiovascular disease--a meta-analysis of prospective cohort studies. Int J Environ Res Public Health. 2012;9(2):391-407. DOI: 10.3390/ijerph9020391. PMID: 22470299.

Fulghum K, Hill BG. Metabolic Mechanisms of Exercise-Induced Cardiac Remodeling. Front Cardiovasc Med. 2018;5:127. DOI: 10.3389/fcvm.2018.00127. PMID: 30255026.

Singh A, Dawson TM, Kulkarni S. Neurodegenerative disorders and gut-brain interactions. J Clin Invest. 2021;131(13):e143775. DOI: 10.1172/JCI143775. PMID: 34196307.

Malhotra RK. Neurodegenerative Disorders and Sleep. Sleep Med Clin. 2022;17(2):307-314. DOI: 10.1016/j.jsmc.2022.02.009. PMID: 35659082.

De-Paula VJ, Radanovic M, Diniz BS, Forlenza OV. Alzheimer's disease. Subcell Biochem. 2012;65:329-52. DOI: 10.1007/978-94-007-5416-4_14. PMID: 23225010.

Green DJ, Smith KJ. Effects of Exercise on Vascular Function, Structure, and Health in Humans. Cold Spring Harb Perspect Med. 2018;8(4):a029819. DOI: 10.1101/cshperspect.a029819. PMID: 28432115.

Amidfar M, de Oliveira J, Kucharska E, Budni J, Kim YK. The role of CREB and BDNF in neurobiology and treatment of Alzheimer's disease. Life Sci. 2020;257:118020. DOI: 10.1016/j.lfs.2020.118020. PMID: 32603820.

Baranowski BJ, Marko DM, Fenech RK, Yang AJT, MacPherson REK. Healthy brain, healthy life: a review of diet and exercise interventions to promote brain health and reduce Alzheimer's disease risk. Appl Physiol Nutr Metab. 2020;45(10):1055-65. DOI: 10.1139/apnm-2019-0910. PMID: 32717151.

Hackney AC. Stress and the neuroendocrine system: the role of exercise as a stressor and modifier of stress. Expert Rev Endocrinol Metab. 2006;1(6):783-92. DOI: 10.1586/17446651.1.6.783. PMID: 20948580.

Tai F, Wang C, Deng X, Li R, Guo Z, Quan H, Li S. Treadmill exercise ameliorates chronic REM sleep deprivation-induced anxiety-like behavior and cognitive impairment in C57BL/6J mice. Brain Res Bull. 2020;164:198-207. DOI: 10.1016/j.brainresbull.2020.08.025. PMID: 32877716.

Sciolino NR, Holmes PV. Exercise offers anxiolytic potential: a role for stress and brain noradrenergic-galaninergic mechanisms. Neurosci Biobehav Rev. 2012;36(9):1965-84. DOI: 10.1016/j.neubiorev.2012.06.005. PMID: 22771334.

Murchison CF, Zhang XY, Zhang WP, Ouyang M, Lee A, Thomas SA. A distinct role for norepinephrine in memory retrieval. Cell. 2004;117(1):131-43. doi: 10.1016/s0092-8674(04)00259-4. PMID: 15066288.

Zaldivar F, Wang-Rodriguez J, Nemet D, Schwindt C, Galassetti P, Mills PJ, et al. Constitutive pro- and anti-inflammatory cytokine and growth factor response to exercise in leukocytes. J Appl Physiol (1985). 2006;100(4):1124-33. DOI: 10.1152/japplphysiol.00562.2005. PMID: 16357073.

Flynn MG, McFarlin BK, Markofski MM. The Anti-Inflammatory Actions of Exercise Training. Am J Lifestyle Med. 2007;1(3):220-35. DOI: 10.1177/1559827607300283. PMID: 25431545.

Koh Y, Park J. Cell adhesion molecules and exercise. J Inflamm Res. 2018 Jul 24;11:297-306. DOI: 10.2147/JIR.S170262. PMID: 30100749.

Goyal MS, Raichle ME. Glucose Requirements of the Developing Human Brain. J Pediatr Gastroenterol Nutr. 2018;66(Suppl3):S46-9. DOI: 10.1097/MPG.0000000000001875. PMID: 29762377.

Tonnies E, Trushina E. Oxidative Stress, Synaptic Dysfunction, and Alzheimer's Disease. J Alzheimers Dis. 2017;57(4):1105-21. DOI: 10.3233/JAD-161088. PMID: 28059794.

Li T, He S, Liu S, Kong Z, Wang J, Zhang Y. Effects of different exercise durations on Keap1-Nrf2-ARE pathway activation in mouse skeletal muscle. Free Radic Res. 2015;49(10):1269-74. DOI: 10.3109/10715762.2015.1066784. PMID: 26118597.

Bojarczuk A, Dzitkowska-Zabielska M. Polyphenol Supplementation and Antioxidant Status in Athletes: A Narrative Review. Nutrients. 2022;15(1):158. DOI: 10.3390/nu15010158. PMID: 36615815.

Radak Z, Chung HY, Koltai E, Taylor AW, Goto S. Exercise, oxidative stress and hormesis. Ageing Res Rev. 2008;7(1):34-42. DOI: 10.1016/j.arr.2007.04.004. PMID: 17869589.

Sukhan D, Liudkevych H, Olkhova І, Botanevych Y, Orlenko V, Solovei O, et al. The role of neurotrophins in post-stroke rehabilitation. Reports of Vinnytsia National Medical University. 2021; 4:651-6. DOI: 10.31393/reports-vnmedical-2021-25(4)-25.

Kuga G, Botezelli J, Gaspar R, Gomes R, Pauli J, Leme J. Hippocampal insulin signaling and neuroprotection mediated by physical exercise in Alzheimer´s Disease. Motriz-revista De Educacao Fisica. 2017;23. DOI: 10.1590/S1980-6574201700SI0008.

Lovatel GA, Elsner VR, Bertoldi K, Vanzella C, Moyses Fdos S, Vizuete A, et al. Treadmill exercise induces age-related changes in aversive memory, neuroinflammatory and epigenetic processes in the rat hippocampus. Neurobiol Learn Mem. 2013;101:94-102. DOI: 10.1016/j.nlm.2013.01.007. PMID: 23357282.

Lin TW, Shih YH, Chen SJ, Lien CH, Chang CY, Huang TY, et al. Running exercise delays neurodegeneration in amygdala and hippocampus of Alzheimer's disease (APP/PS1) transgenic mice. Neurobiol Learn Mem. 2015;118:189-97. DOI: 10.1016/j.nlm.2014.12.005. PMID: 25543023.

Ben-Zeev T, Shoenfeld Y, Hoffman JR. The Effect of Exercise on Neurogenesis in the Brain. Isr Med Assoc J. 2022;24(8):533-8. PMID: 35971998.

Ang ET, Wong PT, Moochhala S, Ng YK. Neuroprotection associated with running: is it a result of increased endogenous neurotrophic factors? Neuroscience. 2003;118(2):335-45. DOI: 10.1016/s0306-4522(02)00989-2. PMID: 12699770.

Chen J, Qin J, Su Q, Liu Z, Yang J. Treadmill rehabilitation treatment enhanced BDNF-TrkB but not NGF-TrkA signaling in a mouse intracerebral hemorrhage model. Neurosci Lett. 2012;529(1):28-32. DOI: 10.1016/j.neulet.2012.09.021. PMID: 22999926.

Funakoshi H, Belluardo N, Arenas E, Yamamoto Y, Casabona A, Persson H, Ibanez CF. Muscle-derived neurotrophin-4 as an activity-dependent trophic signal for adult motor neurons. Science. 1995;268(5216):1495-9. DOI: 10.1126/science.7770776. PMID: 7770776.

Wu NN, Tian H, Chen P, Wang D, Ren J, Zhang Y. Physical Exercise and Selective Autophagy: Benefit and Risk on Cardiovascular Health. Cells. 2019;8(11):1436. DOI: 10.3390/cells8111436. PMID: 31739509.

Rocchi A, Yamamoto S, Ting T, Fan Y, Sadleir K, Wang Y, et al. A Becn1 mutation mediates hyperactive autophagic sequestration of amyloid oligomers and improved cognition in Alzheimer's disease. PLoS Genet. 2017;13(8):e1006962. DOI: 10.1371/journal.pgen.1006962. PMID: 28806762.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.