Main immunogenetic, pathogenetic, and clinical features of Epstein-Barr virus infection (literature review)
PDF

Keywords

pathogenesis
clinical presentation
autoimmune processes
oncogenicity
robust health and well-being

How to Cite

Chemych, M., Saienko, O., Svitailo, V., Klymenko, N., & Chemych, O. (2025). Main immunogenetic, pathogenetic, and clinical features of Epstein-Barr virus infection (literature review). Inter Collegas, 12(2). https://doi.org/10.35339/ic.2025.12.2.css

Abstract

In press

Epstein-Barr Virus (EBV), or human herpesvirus type 4, is a common pathogen that infects [90–95]% of the adult population worldwide. Over the past 10 years, research has significantly expanded our understanding of the etiological characteristics of EBV infection, its role in the development of malignant and autoimmune diseases, and its mechanisms of interaction with the immune system. EBV is a complex herpesvirus that has the ability to infect B lymphocytes and epithelial cells, ensuring lifelong persistence in the human body. It has two phases in its life cycle – lytic and latent in which different genetic programs and immune mechanisms are activated. Depending on the functional state of the cell and the type of latency, the virus can change gene expression patterns to avoid immune surveillance. The immune response to EBV infection includes humoral and cellular components. Cytotoxic CD8⁺ T lymphocytes play a decisive role, but the virus is able to effectively modulate or suppress their activity. To ensure long-term persistence, the virus employs a number of immune evasion strategies, including disruption of antigen presentation via major histocompatibility complex I and II molecules, induction of regulatory T cells, and suppression of proinflammatory responses. EBV infection can manifest in various clinical forms, from infectious mononucleosis to severe chronic diseases: chronic active EBV infection, post-transplant lymphoproliferative disorders, and EBV-associated neoplasms. There is a close relationship between EBV and the development of certain autoimmune diseases, including rheumatoid arthritis, Sjögren's syndrome, and systemic lupus erythematosus. The virus is capable of causing immune dysregulation through molecular mimicry, expression of viral proteins, activation of cytokine pathways, and loss of immune tolerance.

Keywords: pathogenesis, clinical presentation, autoimmune processes, oncogenicity, robust health and well-being.

https://doi.org/10.35339/ic.2025.12.2.css
PDF

References

Infectious mononucleosis. Public Health Center of the Ministry of Health of Ukraine. [Internet]. Available at: https://phc.org.ua/kontrol-zakhvoryuvan/inshi-infekciyni-zakhvoryuvannya/krapelni-infekcii/infekciyniy-mononukleoz [in Ukrainian]. [Accessed 10 Jun 2025].

Damania B, Kenney SC, Raab-Traub N. Epstein-Barr virus: Biology and clinical disease. Cell. 2022;185(20):3652-70. DOI: 10.1016/j.cell.2022.08.026. PMID: 36113467.

Cai F, Gao H, Ye Q. Seroprevalence of Epstein-Barr virus infection in children during the COVID-19 pandemic in Zhejiang, China. Front Pediatr. 2023;11:1064330. DOI: 10.3389/fped.2023.1064330. PMID: 36846160.

Hoover K, Higginbotham K. Epstein-Barr Virus. 2023. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025. PMID: 32644711.

Aubry A, Francois C, Demey B, Louchet-Ducoroy M, Pannier C, Segard C, et al. Evolution of Epstein-Barr Virus Infection Seroprevalence in a French University Hospital over 11 Years, Including the COVID-19 Pandemic, 2013-2023. Microorganisms. 2025;13(4):733. DOI: 10.3390/microorganisms13040733. PMID: 40284570.

Amarillo ME, Lindl K, García Lombardi M, Preciado MV, De Matteo E, Chabay P. Pandemic-Driven Shifts in Epstein-Barr Virus (EBV) Epidemiology: Single Center Study. Viruses. 2025;17(3):375. DOI: 10.3390/v17030375. PMID: 40143303.

Epstein MA, Achong BG, Barr YM. Virus particles in cultured lymphoblasts from Burkitt's lymphoma. Lancet. 1964;1(7335):702-3. DOI: 10.1016/s0140-6736(64)91524-7. PMID: 14107961.

Lupo J, Truffot A, Andreani J, Habib M, Epaulard O, Morand P, Germi R. Virological Markers in Epstein-Barr Virus-Associated Diseases. Viruses. 2023;15(3):656. DOI: 10.3390/v15030656. PMID: 36992365.

Nowalk A, Green M. Epstein-Barr Virus. Microbiol Spectr. 2016;4(3). DOI: 10.1128/microbiolspec.DMIH2-0011-2015. PMID: 27337443.

Choi SJ, Jung SW, Huh S, Cho H, Kang H. Phylogenetic comparison of Epstein-Barr virus genomes. J Microbiol. 2018;56(8):525-33. DOI: 10.1007/s12275-018-8039-x. PMID: 29948828.

Murata T, Sugimoto A, Inagaki T, Yanagi Y, Watanabe T, Sato Y, Kimura H. Molecular Basis of Epstein-Barr Virus Latency Establishment and Lytic Reactivation. Viruses. 2021;13(12):2344. DOI: 10.3390/v13122344. PMID: 34960613.

Wong KCW, Hui EP, Lo KW, Lam WKJ, Johnson D, Li L, et al. Nasopharyngeal carcinoma: an evolving paradigm. Nat Rev Clin Oncol. 2021;18(11):679-95. DOI: 10.1038/s41571-021-00524-x. PMID: 34194007.

Vedham V, Verma M, Mahabir S. Early-life exposures to infectious agents and later cancer development. Cancer Med. 2015;4(12):1908-22. DOI: 10.1002/cam4.538. PMID: 26377256.

Dugan JP, Coleman CB, Haverkos B. Opportunities to Target the Life Cycle of Epstein-Barr Virus (EBV) in EBV-Associated Lymphoproliferative Disorders. Front Oncol. 2019;9:127. DOI: 10.3389/fonc.2019.00127. PMID: 30931253.

Caruso LB, Maestri D, Tempera I. Three-Dimensional Chromatin Structure of the EBV Genome: A Crucial Factor in Viral Infection. Viruses. 2023;15(5):1088. DOI: 10.3390/v15051088. PMID: 37243174.

Machon C, Fabrega-Ferrer M, Zhou D, Cuervo A, Carrascosa JL, Stuart DI, Coll M. Atomic structure of the Epstein-Barr virus portal. Nat Commun. 2019;10(1):3891. DOI: 10.1038/s41467-019-11706-8. PMID: 31467275.

Connolly SA, Jardetzky TS, Longnecker R. The structural basis of herpesvirus entry. Nat Rev Microbiol. 2021;19(2):110-21. DOI: 10.1038/s41579-020-00448-w. PMID: 33087881.

Cui X, Snapper CM. Epstein Barr Virus: Development of Vaccines and Immune Cell Therapy for EBV-Associated Diseases. Front Immunol. 2021;12:734471. DOI: 10.3389/fimmu.2021.734471. PMID: 34691042.

Long HM, Meckiff BJ, Taylor GS. The T-cell Response to Epstein-Barr Virus-New Tricks from an Old Dog. Front Immunol. 2019;10:2193. DOI: 10.3389/fimmu.2019.02193. PMID: 31620125.

Umakanthan S, Bukelo MM. Molecular Genetics in Epstein-Barr Virus-Associated Malignancies. Life (Basel). 2021;11(7):593. DOI: 10.3390/life11070593. PMID: 34206255.

Alsaadawe M, Radman BA, Long J, Alsaadawi M, Fang W, Lyu X. Epstein Barr virus: A cellular hijacker in cancer. Biochim Biophys Acta Rev Cancer. 2024;1879(6):189218. DOI: 10.1016/j.bbcan.2024.189218. PMID: 39549877.

De Leo A, Calderon A, Lieberman PM. Control of Viral Latency by Episome Maintenance Proteins. Trends Microbiol. 2020;28(2):150-62. DOI: 10.1016/j.tim.2019.09.002. PMID: 31624007.

Longnecker RM, Kieff E, Cohen JI. Epstein-barr virus. In Fields Virology: Sixth Edition. Vol. 1. Wolters Kluwer Health Adis (ESP). 2013. p. 324-89.

Coghill AE, McGuire A, Sinha S, Homad L, Sinha I, Sholukh A, et al. Epstein-Barr Virus Glycoprotein Antibody Titers and Risk of Nasopharyngeal Carcinoma. Open Forum Infect Dis. 2022;9(12):ofac635. DOI: 10.1093/ofid/ofac635. PMID: 36519117.

Bu W, Joyce MG, Nguyen H, Banh DV, Aguilar F, Tariq Z, et al. Immunization with Components of the Viral Fusion Apparatus Elicits Antibodies That Neutralize Epstein-Barr Virus in B Cells and Epithelial Cells. Immunity. 2019;50(5):1305-16.e6. DOI: 10.1016/j.immuni.2019.03.010. PMID: 30979688.

Hislop AD, Taylor GS. T-Cell Responses to EBV. Curr Top Microbiol Immunol. 2015;391:325-53. DOI: 10.1007/978-3-319-22834-1_11. PMID: 26428380.

Lv M, Ding Y, Zhang Y, Liu S. Targeting EBV-encoded products: Implications for drug development in EBV-associated diseases. Rev Med Virol. 2024;34(1):e2487. DOI: 10.1002/rmv.2487. PMID: 37905912.

El-Mallawany NK, Rouce RH. EBV and post-transplant lymphoproliferative disorder: a complex relationship. Hematology Am Soc Hematol Educ Program. 2024;2024(1):728-35. DOI: 10.1182/hematology.2024000583. PMID: 39644052.

Ruiz-Pablos M. CD4+ Cytotoxic T Cells Involved in the Development of EBV-Associated Diseases. Pathogens. 2022;11(8):831. DOI: 10.3390/pathogens11080831. PMID: 35894054.

Silva JM, Alves CEC, Pontes GS. Epstein-Barr virus: the mastermind of immune chaos. Front Immunol. 2024;15:1297994. DOI: 10.3389/fimmu.2024.1297994. PMID: 38384471.

Ghasemi F, Tessier TM, Gameiro SF, Maciver AH, Cecchini MJ, Mymryk JS. High MHC-II expression in Epstein-Barr virus-associated gastric cancers suggests that tumor cells serve an important role in antigen presentation. Sci Rep. 2020;10(1):14786. DOI: 10.1038/s41598-020-71775-4. PMID: 32901107.

Quinn LL, Williams LR, White C, Forrest C, Zuo J, Rowe M. The Missing Link in Epstein-Barr Virus Immune Evasion: the BDLF3 Gene Induces Ubiquitination and Downregulation of Major Histocompatibility Complex Class I (MHC-I) and MHC-II. J Virol. 2015;90(1):356-67. DOI: 10.1128/JVI.02183-15. PMID: 26468525.

Hu Z, Usherwood EJ. Immune escape of γ-herpesviruses from adaptive immunity. Rev Med Virol. 2014;24(6):365-78. DOI: 10.1002/rmv.1791. PMID: 24733560.

Andrei G, Trompet E, Snoeck R. Novel Therapeutics for Epstein⁻Barr Virus. Molecules. 2019;24(5):997. DOI: 10.3390/molecules24050997. PMID: 30871092.

Xie C, Zhong LY, Bu GL, Zhao GX, Yuan BY, Liu YT, et al. Anti-EBV antibodies: Roles in diagnosis, pathogenesis, and antiviral therapy. J Med Virol. 2023;95(5):e28793. DOI: 10.1002/jmv.28793. PMID: 37212266.

Pagano JS, Whitehurst CB, Andrei G. Antiviral Drugs for EBV. Cancers (Basel). 2018;10(6):197. DOI: 10.3390/cancers10060197. PMID: 29899236.

Kimura H, Cohen JI. Chronic Active Epstein-Barr Virus Disease. Front Immunol. 2017;8:1867. DOI: 10.3389/fimmu.2017.01867. PMID: 29375552.

Kawada JI, Ito Y, Ohshima K, Yamada M, Kataoka S, Muramatsu H, et al.; Committee for Guidelines for the Management of Chronic Active EBV Disease, Related Disorders (the MHLW Research Team in Japan). Updated guidelines for chronic active Epstein-Barr virus disease. Int J Hematol. 2023;118(5):568-76. DOI: 10.1007/s12185-023-03660-5. PMID: 37728704.

Bollard CM, Cohen JI. How I treat T-cell chronic active Epstein-Barr virus disease. Blood. 2018;131(26):2899-905. DOI: 10.1182/blood-2018-03-785931. PMID: 29712633.

Bjornevik K, Cortese M, Healy BC, Kuhle J, Mina MJ, Leng Y, et al. Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis. Science. 2022;375(6578):296-301. DOI: 10.1126/science.abj8222. PMID: 35025605.

Houen G, Trier NH. Epstein-Barr Virus and Systemic Autoimmune Diseases. Front Immunol. 2021;11:587380. DOI: 10.3389/fimmu.2020.587380. PMID: 33488588.

Sakkas LI, Daoussis D, Liossis SN, Bogdanos DP. The Infectious Basis of ACPA-Positive Rheumatoid Arthritis. Front Microbiol. 2017;8:1853. DOI: 10.3389/fmicb.2017.01853. PMID: 29033912.

Johansson L, Pratesi F, Brink M, Arlestig L, D'Amato C, Bartaloni D, et al. Antibodies directed against endogenous and exogenous citrullinated antigens pre-date the onset of rheumatoid arthritis. Arthritis Res Ther. 2016;18(1):127. DOI: 10.1186/s13075-016-1031-0. PMID: 27255888.

Kalisz K, Alessandrino F, Beck R, Smith D, Kikano E, Ramaiya NH, Tirumani SH. An update on Burkitt lymphoma: a review of pathogenesis and multimodality imaging assessment of disease presentation, treatment response, and recurrence. Insights Imaging. 2019;10(1):56. DOI: 10.1186/s13244-019-0733-7. PMID: 31115699.

Fang H, Wang W, Medeiros LJ. Burkitt lymphoma. Hum Pathol. 2025;156:105703. DOI: 10.1016/j.humpath.2024.105703. PMID: 39662784.

Redmond LS, Ogwang MD, Kerchan P, Reynolds SJ, Tenge CN, Were PA, et al. Endemic Burkitt lymphoma: a complication of asymptomatic malaria in sub-Saharan Africa based on published literature and primary data from Uganda, Tanzania, and Kenya. Malar J. 2020;19(1):239. DOI: 10.1186/s12936-020-03312-7. PMID: 32718346.

Fitzsimmons L, Kelly GL. EBV and Apoptosis: The Viral Master Regulator of Cell Fate? Viruses. 2017;9(11):339. DOI: 10.3390/v9110339. PMID: 29137176.

Weiss LM, Strickler JG, Warnke RA, Purtilo DT, Sklar J. Epstein-Barr viral DNA in tissues of Hodgkin's disease. Am J Pathol. 1987;129(1):86-91. PMID: 2821817.

Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127(20):2375-90. DOI: 10.1182/blood-2016-01-643569. PMID: 26980727.

Weniger MA, Küppers R. Molecular biology of Hodgkin lymphoma. Leukemia. 2021;35(4):968-81. DOI: 10.1038/s41375-021-01204-6. PMID: 33686198.

Tsotridou E, Hatzipantelis E. Epstein-Barr Infection, Hodgkin's Lymphoma, and the Immune System: Insights into the Molecular Mechanisms Facilitating Immune Evasion. Cancers (Basel). 2025;17(9):1481. DOI: 10.3390/cancers17091481. PMID: 40361408.

Li W, Duan X, Chen X, Zhan M, Peng H, Meng Y, et al. Immunotherapeutic approaches in EBV-associated nasopharyngeal carcinoma. Front Immunol. 2023 Jan 11;13:1079515. DOI: 10.3389/fimmu.2022.1079515. PMID: 36713430.

Nakanishi Y, Wakisaka N, Kondo S, Endo K, Sugimoto H, Hatano M, et al. Progression of understanding for the role of Epstein-Barr virus and management of nasopharyngeal carcinoma. Cancer Metastasis Rev. 2017;36(3):435-47. DOI: 10.1007/s10555-017-9693-x. PMID: 28819752.

Murer A, Rühl J, Zbinden A, Capaul R, Hammerschmidt W, Chijioke O, Münz C. MicroRNAs of Epstein-Barr Virus Attenuate T-Cell-Mediated Immune Control In Vivo. mBio. 2019;10(1):e01941-18. DOI: 10.1128/mBio.01941-18. PMID: 30647153.

Hirabayashi M, Georges D, Clifford GM, de Martel C. Estimating the Global Burden of Epstein-Barr Virus-Associated Gastric Cancer: A Systematic Review and Meta-Analysis. Clin Gastroenterol Hepatol. 2023;21(4):922-30.e21. DOI: 10.1016/j.cgh.2022.07.042. PMID: 35963539.

Wong Y, Meehan MT, Burrows SR, Doolan DL, Miles JJ. Estimating the global burden of Epstein-Barr virus-related cancers. J Cancer Res Clin Oncol. 2022;148(1):31-46. DOI: 10.1007/s00432-021-03824-y. PMID: 34705104.

Abe H, Kaneda A, Fukayama M. Epstein-Barr Virus-Associated Gastric Carcinoma: Use of Host Cell Machineries and Somatic Gene Mutations. Pathobiology. 2015;82(5):212-23. DOI: 10.1159/000434683. PMID: 26337667.

Saito R, Abe H, Kunita A, Yamashita H, Seto Y, Fukayama M. Overexpression and gene amplification of PD-L1 in cancer cells and PD-L1+ immune cells in Epstein-Barr virus-associated gastric cancer: the prognostic implications. Mod Pathol. 2017;30(3):427-39. DOI: 10.1038/modpathol.2016.202. PMID: 27934877.

Li Z, Lai Y, Sun L, Zhang X, Liu R, Feng G, et al. PD-L1 expression is associated with massive lymphocyte infiltration and histology in gastric cancer. Hum Pathol. 2016;55:182-9. DOI: 10.1016/j.humpath.2016.05.012. PMID: 27260946.

Epstein-Barr Virus and Infectious Mononucleosis. Laboratory Testing for Epstein-Barr Virus (EBV), 10 Apr 2024 [Internet]. Available at: https://www.cdc.gov/epstein-barr/php/laboratories [accessed 10 Jun 2025].

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.