THE ROLE OF TRACE ELEMENT SELENIUM IN THE DEVELOPMENT OF CARDIOVASCULAR DISEASES
PDF

Keywords

selenium, selenoproteins, cardiovascular disease

How to Cite

Zhuravlyova, L., & Filonenko, M. (2019). THE ROLE OF TRACE ELEMENT SELENIUM IN THE DEVELOPMENT OF CARDIOVASCULAR DISEASES. Inter Collegas, 6(2), 77-81. https://doi.org/10.35339/ic.6.2.77-81

Abstract

THE ROLE OF TRACE ELEMENT SELENIUM IN CARDIOVASCULAR DISEASE DEVELOPMENT (review)

Zhuravlyova L.V., Filonenko M.V.

Balanced levels of trace element selenium are of high importance for many of the body’s regulatory and metabolic functions. Reduction  in selenium supply in humans can lead to an increased risk of various pathologies, including cardiovascular diseases. This article considers the contemporary opinions on the role of selenium in physiology and pathophysiology of the cardiovascular system. A particular attention is payed to the effects of selenium deficiency on the development of acute coronary syndrome, including myocardial damage after ischemia/reperfusion and postinfarction remodeling of the left ventricle. Also, the intrinsic properties of selenium for inhibition of apoptosis are highlighted.

Keywords: selenium, selenoproteins, cardiovascular disease.

 

Резюме

РОЛЬ МІКРОЕЛЕМЕНТУ СЕЛЕНУ В РОЗВИТКУ СЕРЦЕВО-СУДИННИХ ЗАХВОРЮВАНЬ

Журавльова Л.В., Філоненко М.В.

Збалансовані рівні мікроелементу селену мають велике значення для багатьох регуляторних та метаболічних функцій організму. Зниження надходження селену в організм людини може призвести до підвищеного ризику розвитку різних патологій, включаючи серцево-судинні захворювання. В статті розглянуто сучасні погляди на роль селену в забезпеченні функціонування серцево-судинної системи. Особливої уваги приділено впливу дефіциту селену на розвиток гострого коронарного синдрому, включаючи ураження міокарда після ішемії / реперфузії та постінфарктного ремоделювання лівого шлуночка. Також виствітлено аспекти внутрішніх властивостей селену щодо інгібування апоптозу. 

Ключові слова: селен, селенопротеїни, серцево-судинні захворювання.

 

Резюме

РОЛЬ МИКРОЭЛЕМЕНТА СЕЛЕНА В РАЗВИТИИ СЕРДЕЧНО-СОСУДИСТЫХ ЗАБОЛЕВАНИЙ

Журавлева Л.В., Филоненко М.В.

Сбалансированный уровень микроэлемента селена имеет большое значение для многих регуляторных и метаболических функций организма. Снижение поступления селена в организм может привести к увеличению риска развития различных патологий, в том числе сердечно-сосудистых заболеваний. В данной статье рассмотрены современные взгляды на роль селена в обеспечении функционирования сердечно-сосудистой системы. Особое внимание уделено влиянию дефицита селена на развитие острого коронарного синдрома, включая повреждение миокарда после ишемии / реперфузии и постинфарктного ремоделирования левого желудочка. Также освещены аспекты внутренних свойств селена по ингибированию апоптоза.

Ключевые слова: селен, селенопротеины, сердечно-сосудистые заболевания.

https://doi.org/10.35339/ic.6.2.77-81
PDF

References

Gromova, O., Gogoleva, I. (2008). Selen - vpechatljajushhie itogi i perspektivy primenenija [Selenium – impressive results and prospects of application.]. Trudnyj pacient, 3, 18–25.

Rebrov, B., Knjazeva, A. (2010). Zastosuvannja selenu pri sercevo-sudinnih zahvorjuvannjah na tl3 revmato¿dnogo artritu [Application of selenium in cardiovascular diseases against rheumatoid arthritis]. Ukra¿ns'kij revmatologichnij zhurnal, 41(3), 42–46.

Ago, T., Sadoshima, J. (2006). Thioredoxin and ventricular remodeling. J. Mol. Cell. Cardiol, 41, 762–773. doi: 10.1016/j.yjmcc.2006.08.006.

Ahrens, I., Ellwanger, C., Smith, B.K., Bassler, N., Chen, Y.C., Neudorfer, I., Ludwig, A., Bode, C., Peter, K. (2008). Selenium supplementation induces metalloproteinase-dependent L-selectin shedding from monocytes. J. Leukoc. Biol., 83, 1388–1395. doi: 10.1189/jlb.0707497.

Benstoem, Ñ., Goetzenich, A., Kraemer, S. (2015). Selenium and its supplementation in cardiovascular disease-what do we know? Nutrients, 7 (5), 3094–3118. doi: 10.3390/nu7053094.

Crack, P., Taylor J., Flentjar N., de Haan J. (2001). Increased infarct size and exacerbated apoptosis in the glutathione peroxidase-1 (Gpx-1) knockout mouse brain in response to ischemia/reperfusion injury. J. Neurochem., 78, 1389–1399. http://doi.org/10.1046/j.1471–4159.2001.00535.x

Flores-Mateo, G., Navas-Acien, A., Pastor-Barriuso, R., Guallar, E. (2006). Selenium and coronary heart disease: a meta-analysis. Am J Clin Nutr., 84(4), 762–773. doi: 10.1093/ajcn/84.4.762.

Fradejas, N., Pastor, M., Mora-Lee, S., Tranque, P. (2008). SEPS1 gene is activated during astrocyte ischemia and shows prominent antiapoptotic effects. Journal of Molecular Neuroscience, 35, 259–265. 9. Joseph, J. (2013). Selenium and cardiometabolic health: inconclusive yet intriguing evidence.

American Journal of Medical Science, 346, 216–220. doi: 10.1097/MAJ.0b013e3182638716.

Jung, K., Lee, E., Yu, B., Chung, H. (2009). Significance of protein tyrosine kinase/protein tyrosine phosphatase balance in the regulation of NF-kappaB signaling in the inflammatory process and aging.

Free Radical Biology Medicine, 47, 983–991. https://doi.org/10.1016/j.freeradbiomed.2009.07.009.

Lu, C., Qiu, F., Zhou, H., Peng, Y., Hao, W., Xu, J. (2006). Identification and characterization of selenoprotein K: an antioxidant in cardiomyocytes. FEBS Letters, 580, 5189–5197. doi: 10.1016/j.febslet.2006.08.065.

Lubos, E., Loscalzo, J., Handy, D. (2011). Glutathione peroxidase-1 in health and disease: from

molecular mechanisms to therapeutic opportunities. Antioxidant Redox Signalling, 15, 1957–1997. doi: 10.1089/ars.2010.3586.

Lubos, E., Sinning, C., Schnabel, R., Wild, P., Zeller, T., Rupprecht, H., Bickel, C., Lackner, K.J., Peetz, D., Loscalzo, J. (2010). Serum selenium and prognosis in cardiovascular disease: results from the AtheroGene study. Atherosclerosis, 209, 271–277. doi:10.1016/j.atherosclerosis.2009.09.008.

Maulik, N., Das, D. (2008). Emerging potential of thioredoxin and thioredoxin interacting proteins in various disease conditions. Biochim. Biophys. Acta, 1780, 1368–1382. doi: 10.1016/ j.bbagen.2007.12.008.

Moro, C., Jouan, M. G., Rakotovao, A., Toufektsian, M. (2007). Delayed expression of cytokines after reperfused myocardial infarction: possible trigger for cardiac dysfunction and ventricular remodeling. American Journal of Physiology. Heart and Circulational Physiology, 293, 3014–3019. doi:10.1152/ ajpheart.00797.2007.

Mukherjee, S., Gangopadhyay, H., Das, D. (2008). Broccoli: a unique vegetable that protects mammalian hearts through the redox cycling of the thioredoxin superfamily. Journal of Agricultural Food Chemistry, 56, 609–617. doi: 10.1021/jf0728146.

Rose, A., Hoffmann, P. (2015). Selenoproteins and cardiovascular stress. Frontiers in Cardiovascular Research Thrombosis and Haemostasis, 113 (3), 494–504. doi: 10.1160/TH14-07-0603. 18.Tanguy, S., Grauzam, S., De Leiris, J., Boucher, F. (2012). Impact of dietary selenium intake on cardiac health: experimental approaches and human studies. Version of Record online. doi: 10.1002/mnfr.201100766.

Tanguy, S., Rakotovao, A., Jouan, M., Ghezzi, C., de Leiris, J., Boucher, F. (2011). Dietary selenium intake influences Cx43 dephosphorylation, TNF- expression and cardiac remodeling after reperfused infarction. Molecular Nutrition Food Research, 55, 522–529. doi: 10.1002/mnfr.201000393.

Tanguy, S., Toufektsian, M., Besse, S., Ducros, V., de Leiris, J., Boucher, F. (2003). Dietary selenium intake affects cardiac susceptibility to ischaemia/reperfusion in male senescent rats. Age and Ageing, 32, 273–278. doi: 10.1093/ageing/32.3.273.

Venardos, K., Kaye, D. (2007). Myocardial ischemia-reperfusion injury, antioxidant enzyme systems, and selenium: a review. Current Medical Chemistry, 42(23), 1025–1032.

Wang, X., Vatamaniuk, M., Wang, S., Roneker, C. (2008). Molecular mechanisms for hyperinsulinaemia induced by overproduction of selenium-dependent glutathione peroxidase-1 in mice. Diabetologia, 51, 1515–1524. doi: 10.1007/s00125-008-1055-3.

Weber, K., Weglicki, W., Simpson, R. (2009). Macro- and micronutrient dyshomeostasis in the adverse structural remodeling of myocardium. Cardiovasc. Res., 81, 500–508. doi: 10.1093/cvr/cvn261.

Yamniuk, A., Ishida, H., Lippert, D., Vogel, H. Thermodynamic effects of noncoded and coded methionine substitutions in calmodulin. Biophysical Journal, 96, 1495–1507. doi: 10.1016/j.bpj.2008.10.060.

"Inter Collegas" is an open access journal: all articles are published in open access without an embargo period, under the terms of the CC BY-NC-SA (Creative Commons Attribution ‒ Noncommercial ‒ Share Alike) license; the content is available to all readers without registration from the moment of its publication. Electronic copies of the archive of journals are placed in the repositories of the KhNMU and V.I. Vernadsky National Library of Ukraine.