fractal dimension
fractal analysis


Morphometry is an integral part of most modern morphological studies and the classic morphological morphometric methods and techniques are often borrowed for research in other fields of medicine. The majority of morphometric techniques are derived from Euclidean geometry. In the past decades, the principles, parameters and methods of fractal geometry are increasingly used in morphological studies. The basic parameter of fractal geometry is fractal dimension. Fractal dimension allows you to quantify the degree of filling of space with a certain geometric object and to characterize the complexity of its spatial configuration. There are many anatomical structures with complex irregular shapes that cannot be unambiguously and comprehensively characterized by methods and techniques of traditional geometry and traditional morphometry: irregular linear structures, irregular surfaces of various structures and pathological foci, structures with complex branched, tree-like, reticulated, cellular or porous structure, etc. Fractal dimension is a useful and informative morphometric parameter that can complement existing quantitative parameters to quantify objective characteristics of various anatomical structures and pathological foci. Fractal analysis can qualitatively complement existing morphometric methods and techniques and allow a comprehensive assessment of the spatial configuration complexity degree of irregular anatomical structures. The review describes the basic principles of Euclidean and fractal geometry and their application in morphology and medicine, importance and application of sizes and their derivatives, topological, metric and fractal dimensions, regular and irregular figures in morphology, and practical application of fractal dimension and fractal analysis in the morphological studies and clinical practice.


1. Avtandilov, G.G. (1990). Medicinskaja morfometrija [Medical morphometry]. Moscow: Medicina. [In Russian]
2. Hudoerkov, R.M. (2014). Metody komp'juternoj morfometrii v nejromorfologii: uchebnoe posobie (bazovyj kurs) [Methods of computer morphometry in neuromorphology: a textbook (basic course)]. Moscow: FGBU «NCN» RAMN. [In Russian]
3. Nikonenko, A.G. (2013). Vvedenie v kolichestvennuju gistologiju [Introduction to Quantitative Histology]. Kiev: Kniga-Pljus. [In Russian]
4. Speranskij, V.S., & Zajchenko, A.I. (1980). Forma i konstrukcija cherepa [Skull shape and construction]. Moscow: Medicina. [In Russian]
5. Blei, R. (2003). Analysis in integer and fractional dimensions. New York: Cambridge university press.
6. Jelinek, H. & Fernandez, E. (1998). Neurons and fractals: How reliable and useful are calculations of offractal dimensions?. Journal of Neuroscience Methods. 81. 9-18. 10.1016/S0165-0270(98)00021-1.
7. Aleksandrov, P.S., & Pasynkov, B.A. (1973). Vvedenie v teoriju razmernosti [Introduction to Dimension Theory]. Moscow: Nauka. [In Russian]
8. Feder, J. (1988). Fractals. New York: Plenum Press.
9. Kronover, P.M. (2000). Fraktaly i haos v dinamicheskih sistemah. Osnovy teorii [Fractals and chaos in dynamical systems. Foundations of the theory]. Moscow: Postmarket. [In Russian]
10. Harte, D. (2001). Multifractals. London: Chapman & Hall.
11. Falconer, K. (1990). Fractal geometry: mathematical foundations and applications. Chichester: John Wiley.
12. Fomenko, A.T. (1993). Nagljadnaja geometrija i topologija [Descriptive geometry and topology]. — Moscow: MGU. [In Russian]
13. Mandelbrot, B.B. (1975). Les Objets fractals: forme, hasard et dimension. Paris: Flammarion. 214 p.
14. Mandelbrot, B.B. (1977). Fractals – form, chance and dimension. San Francisco: W. H. Freeman. 365 p.
15. Mandelbrot, B.B. (1982). The fractal geometry of nature. San Francisco: W.H. Freeman and Company. 470 p.
16. Di Ieva, A., Grizzi, F., Jelinek, H., Pellionisz, A. J., & Losa, G. A. (2014). Fractals in the Neurosciences, Part I: General Principles and Basic Neurosciences. The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry, 20(4), 403–417.
17. Di Ieva, A., Esteban, F. J., Grizzi, F., Klonowski, W., & Martín-Landrove, M. (2015). Fractals in the neurosciences, Part II: clinical applications and future perspectives. The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry, 21(1), 30–43.
18. Rangayyan, R. M., & Nguyen, T. M. (2007). Fractal analysis of contours of breast masses in mammograms. Journal of digital imaging, 20(3), 223–237.
19. King, R. D., George, A. T., Jeon, T., Hynan, L. S., Youn, T. S., Kennedy, D. N., Dickerson, B., & the Alzheimer’s Disease Neuroimaging Initiative (2009). Characterization of Atrophic Changes in the Cerebral Cortex Using Fractal Dimensional Analysis. Brain imaging and behavior, 3(2), 154–166.
20. Ţălu, Ş., Stach, S., Sueiras, V., & Ziebarth, N. M. (2015). Fractal analysis of AFM images of the surface of Bowman's membrane of the human cornea. Annals of biomedical engineering, 43(4), 906–916.
21. Kamiya, A., & Takahashi, T. (2007). Quantitative assessments of morphological and functional properties of biological trees based on their fractal nature. Journal of applied physiology (Bethesda, Md. : 1985), 102(6), 2315–2323.
22. Zamir M. (1999). On fractal properties of arterial trees. Journal of theoretical biology, 197(4), 517–526.
23. Lorthois, S., & Cassot, F. (2010). Fractal analysis of vascular networks: insights from morphogenesis. Journal of theoretical biology, 262(4), 614–633.
24. Tălu S. (2011). Fractal analysis of normal retinal vascular network. Oftalmologia (Bucharest, Romania : 1990), 55(4), 11–16.
25. Cross, S. S., Start, R. D., Silcocks, P. B., Bull, A. D., Cotton, D. W., & Underwood, J. C. (1993). Quantitation of the renal arterial tree by fractal analysis. The Journal of pathology, 170(4), 479–484.
26. Helmberger, M., Pienn, M., Urschler, M., Kullnig, P., Stollberger, R., Kovacs, G., Olschewski, A., Olschewski, H., & Bálint, Z. (2014). Quantification of tortuosity and fractal dimension of the lung vessels in pulmonary hypertension patients. PloS one, 9(1), e87515.
27. van Beek J. H. (1997). Is local metabolism the basis of the fractal vascular structure in the heart?. International journal of microcirculation, clinical and experimental, 17(6), 337–345.
28. Di Ieva, A., Grizzi, F., Gaetani, P., Goglia, U., Tschabitscher, M., Mortini, P., & Rodriguez y Baena, R. (2008). Euclidean and fractal geometry of microvascular networks in normal and neoplastic pituitary tissue. Neurosurgical review, 31(3), 271–281.
29. Helthuis, J., van Doormaal, T., Hillen, B., Bleys, R., Harteveld, A. A., Hendrikse, J., van der Toorn, A., Brozici, M., Zwanenburg, J., & van der Zwan, A. (2019). Branching Pattern of the Cerebral Arterial Tree. Anatomical record (Hoboken, N.J. : 2007), 302(8), 1434–1446.
30. Stepanenko, A.Yu., & Maryenko, N.I. (2015). Fraktal'nyj analiz kak metod morfometricheskogo issledovanija poverhnostnoj sosudistoj seti mozzhechka cheloveka [Fractal analysis as a method of morphometric study of the superficial vascular network of human cerebellum]. Medytsyna syohodni i zavtra, 4(69), 50–55. [In Russian]
31. Di Ieva, A., Niamah, M., Menezes, R. J., Tsao, M., Krings, T., Cho, Y. B., Schwartz, M. L., & Cusimano, M. D. (2014). Computational fractal-based analysis of brain arteriovenous malformation angioarchitecture. Neurosurgery, 75(1), 72–79.
32. Glenny, R. W., Krueger, M., Bauer, C., & Beichel, R. R. (2020). The fractal geometry of bronchial trees differs by strain in mice. Journal of applied physiology (Bethesda, Md.: 1985), 128(2), 362–367.
33. Takeda, T., Ishikawa, A., Ohtomo, K., Kobayashi, Y., & Matsuoka, T. (1992). Fractal dimension of dendritic tree of cerebellar Purkinje cell during onto- and phylogenetic development. Neuroscience research, 13(1), 19–31.
34. Puškaš, N., Zaletel, I., Stefanović, B. D., & Ristanović, D. (2015). Fractal dimension of apical dendritic arborization differs in the superficial and the deep pyramidal neurons of the rat cerebral neocortex. Neuroscience letters, 589, 88–91.
35. Milosević, N. T., & Ristanović, D. (2006). Fractality of dendritic arborization of spinal cord neurons. Neuroscience letters, 396(3), 172–176.
36. Fernández, E., & Jelinek, H. F. (2001). Use of fractal theory in neuroscience: methods, advantages, and potential problems. Methods (San Diego, Calif.), 24(4), 309–321.
37. Pirici, D., Mogoantă, L., Mărgăritescu, O., Pirici, I., Tudorică, V., & Coconu, M. (2009). Fractal analysis of astrocytes in stroke and dementia. Romanian journal of morphology and embryology = Revue roumaine de morphologie et embryologie, 50(3), 381–390.
38. Reichenbach, A., Siegel, A., Senitz, D., & Smith, T. G., Jr (1992). A comparative fractal analysis of various mammalian astroglial cell types. NeuroImage, 1(1), 69–77.
39. Karperien, A. L., & Jelinek, H. F. (2015). Fractal, multifractal, and lacunarity analysis of microglia in tissue engineering. Frontiers in bioengineering and biotechnology, 3, 51.
40. Stepanenko, A.Y., & Maryenko, N.I. (2017) Fraktal'nyj analiz belogo veshhestva mozzhechka cheloveka [Fractal analysis of the human cerebellum white matter]. World of Medicine and Biology, 3(61), 145–149. [In Russian]
41. Maryenko, N.I., & Stepanenko, O.Y. (2017) Fraktal'nyj analiz biloi' rechovyny pivkul' mozochka ljudyny [Fractal analysis of white matter of the human cerebellum hemispheres]. Ukr. ž. med. bìol. Sportu, 2 (4), 38-43. [In Ukrainian]
42. Akar, E., Kara, S., Akdemir, H., & Kırış, A. (2015). Fractal dimension analysis of cerebellum in Chiari Malformation type I. Computers in biology and medicine, 64, 179–186.
43. Liu, J. Z., Zhang, L. D., & Yue, G. H. (2003). Fractal dimension in human cerebellum measured by magnetic resonance imaging. Biophysical journal, 85(6), 4041–4046.
44. Wu, Y. T., Shyu, K. K., Jao, C. W., Wang, Z. Y., Soong, B. W., Wu, H. M., & Wang, P. S. (2010). Fractal dimension analysis for quantifying cerebellar morphological change of multiple system atrophy of the cerebellar type (MSA-C). NeuroImage, 49(1), 539–551.
45. Gulec, M., Tassoker, M., Ozcan, S., & Orhan, K. (2021). Evaluation of the mandibular trabecular bone in patients with bruxism using fractal analysis. Oral radiology, 37(1), 36–45.
46. Kato, C. N., Barra, S. G., Tavares, N. P., Amaral, T. M., Brasileiro, C. B., Mesquita, R. A., & Abreu, L. G. (2020). Use of fractal analysis in dental images: a systematic review. Dento maxillo facial radiology, 49(2), 20180457.
47. Smith, T. G., Jr, Lange, G. D., & Marks, W. B. (1996). Fractal methods and results in cellular morphology--dimensions, lacunarity and multifractals. Journal of neuroscience methods, 69(2), 123–136.
48. Ling, E. J., Servio, P., & Kietzig, A. M. (2016). Fractal and Lacunarity Analyses: Quantitative Characterization of Hierarchical Surface Topographies. Microscopy and microanalysis : the official journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada, 22(1), 168–177.
49. Dougherty, G., & Henebry, G. M. (2001). Fractal signature and lacunarity in the measurement of the texture of trabecular bone in clinical CT images. Medical engineering & physics, 23(6), 369–380.
50. Yasar, F., & Akgünlü, F. (2005). Fractal dimension and lacunarity analysis of dental radiographs. Dento maxillo facial radiology, 34(5), 261–267.
51. Park, Y. W., Kim, S., Ahn, S. S., Han, K., Kang, S. G., Chang, J. H., Kim, S. H., Lee, S. K., & Park, S. H. (2020). Magnetic resonance imaging-based 3-dimensional fractal dimension and lacunarity analyses may predict the meningioma grade. European radiology, 30(8), 4615–4622.
52. Smitha, K. A., Gupta, A. K., & Jayasree, R. S. (2015). Fractal analysis: fractal dimension and lacunarity from MR images for differentiating the grades of glioma. Physics in medicine and biology, 60(17), 6937–6947.
53. Maryenko, N.I., & Stepanenko, O.Yu. (2021). Fraktal'nyj analiz zobrazhen' u medycyni ta morfologii': bazovi pryncypy ta osnovni metodyky [Fractal analysis of images in medicine and morphology: basic principles and methodologies]. Morphologia, 15(3), 196-206. [In Ukrainian]

Copyright for articles published in the journal is regulated by the License Agreement for the use of a scientific article in the journal, which is concluded between the author of the article (Licensor) and Kharkov National Medical University (Licensee, publisher of the journal "Inter Collegas"). The licensor grants to the Licensee a non-exclusive non-exclusive license for the use of the article (a license that does not exclude the use of the article by the Licensor and the issuance of licenses to others for use of this article) on the terms and for the period specified in the contract. The licensor (the author of the article) grants the Licensee the right to reproduce the article (publication in the journal "Inter Collegas", publication, duplication, duplication or other reproduction of the article without limiting the circulation of copies, each copy of the article must contain the name of the Licensor; Of general information, including the publication of the article in full or in part on the Internet on the journal page, the right to use the metadata of the article (titles, full names of authors, annotations, bibliography eskih materials) through the dissemination and communication to the public, processing and systematization, as well as inclusion in various databases and in-formational system).

The licensor grants the licensee the right to transfer, store and process his personal data (full name, scientific degree, academic title, place of work and position, contact information of the authors) with the purpose of including them in the database in accordance with the Law of Ukraine No. 2297 - VI "on protection of personal data" from 01.06.2010.

Personal data and metadata of the article are provided for their storage and processing in various databases and information systems, including them in analytical and statistical reporting, creating sound relationships between the objects of works of science, literature and art with personal data, etc. on unlimited territory. The licensee has the right to transfer the specified data for processing and storage to third parties provided that such a fact is notified with the provision of information about the third party (name and address) to the Licensor.