Abstract
Over the last many years, cardiovascular disease has reached epidemic proportions among chronic noncommunicable diseases worldwide. According to the latest tendencies, cardiovascular diseases play the leading role in the formation of current negative health and demographic trends in Ukraine and all over the
world: they significantly affect the main health indicators: morbidity, mortality, disability, life expectancy and quality of life. If we take the last 20 years, we can see that the prevalence of CVDs among the Ukrainian population has tripled, and the mortality rate from them has risen by 40%. Review was analysed serum level
insulin-like growth factor-I (IGF-I) in patients with acute myocardial infarction and his role in left ventricular remodelling was established. The scientific data regarding the neurohumoral component of acute myocardial infarction pathogenesis have been expanded by increasing levels of the angiogenesis marker IGF-I, which can be explained by his properties as markers of the acute phase of inflammation. An analysis of the relationship between troponin I and IGF-I, a marker of myocardial damage, showed a direct relationship, indicating an increase in troponin I concentration with rising serum IGF-I levels. This indicates that the activity of the angiogenesis marker IGF-I may be associated with the severity and depth of myocardial damage.
References
Kovalenko V.M, Kornatsʹkyy V.M, Moroz D.M, y dr. (2016). Problemy zdorovʺya i medychnoyi dopomohy ta modelʹ pokrashchannya v suchasnykh umovakh [Problems of health and medical care - a model for improvement in modern conditions].– Kyyiv: Instytut kardiolohiyi imeni akademika M. D. Strazheska NAMN Ukrayiny, p. 261.
Kovalenko VM, Dorohoy AP. (2016). Sertsevo-sudynni khvoroby: medychno-sotsialʹne znachennya ta stratehiya rozvytku kardiolohiyi v Ukrayini [Cardiovascular diseases: medical and social significance and strategy for the development of cardiology in Ukraine]. Materialy XVII Natsionalʹnoho konhresu kardiolohiv Ukrayiny; Kyyiv, Ukrayina. pp. 5-14.
Vázquez-Oliva G., Zamora A., Ramos R., Marti R., Subirana I., Grau M et al. (2018). Acute Myocardial Infarction Population Incidence and Mortality Rates, and 28-day Case-fatality in Older Adults. The REGICOR Study. Rev Esp Cardiol (Engl Ed), 71, 718-725. English, Spanish. doi: 10.1016/j.rec.2017.10.019. Epub 2017 Nov 22. PMID: 29174866.
Bradley S.M., Borgerding J.A., Wood G.B., Maynard C., Fihn S.D. (2019). Incidence, Risk Factors, and Outcomes Associated With In-Hospital Acute Myocardial Infarction. JAMA Netw Open, 2(1), e187348. doi: 10.1001/jamanetworkopen.2018.7348. PMID: 30657538; PMCID: PMC6484558.
Quadros A.S., Cambruzzi E., Sebben J., David R.B., Abelin A., Welter D. et al. (2012). Red versus white thrombi in patients with ST-elevation myocardial infarction undergoing primary percutaneous coronary intervention: clinical and angiographic outcomes. Am Heart J, 164(4), 553-60. doi: 10.1016/j.ahj.2012.07.022. PMID: 23067914.
Sakalaki M., Hansson P.O., Rosengren A. et al. (2021). Multi-modality biomarkers in the early prediction of ischaemic heart disease in middle-aged men during a 21-year follow-up. BMC Cardiovasc Disord., 21, 65. https://doi.org/10.1186/s12872-021-01886-x
Ghantous C.M., Kamareddine L., Farhat R., Zouein F.A., Mondello S., Kobeissy F., Zeidan A. (2020). Advances in Cardiovascular Biomarker Discovery. Biomedicines, 8(12), 552. https://doi.org/10.3390/biomedicines8120552
Kopytsya M., Hilova Y., Rodionova Y., Polivenok I., Shelest B. (2021). Soluble ST2 in Predicting Adverse Outcome after Revascularization with Percutaneous Coronary Intervention in Patients with ST-Elevation Myocardial Infarction. Duzce Medical Journal, 23(2), 174-180. DOI: 10.18678/dtfd.889947
Li X., Liu Q., Zhou T., Zhao S., Zhou S. (2008). PAPP-A: a possible pathogenic link to the instability of atherosclerotic plaque. Med Hypotheses, 70(3), 597-599. doi: 10.1016/j.mehy.2007.05.043. PMID: 17714879.
Lund J., Qin Q.P., Ilva T., Pettersson K., Voipio-Pulkki L.M., Porela P., Pulkki K. (2003). Circulating pregnancy-associated plasma protein a predicts outcome in patients with acute coronary syndrome but no troponin I elevation. Circulation, 108(16), 1924-1926. doi: 10.1161/01.CIR.0000096054.18485.07. PMID: 14530192.
Ohlsson C., Mohan S., Sjögren K., Tivesten A., Isgaard J., Isaksson O., et al. (2009). The role of liver-derived insulin-like growth factor-I. Endocr Rev., 30(5), 494-535. doi: 10.1210/er.2009-0010. PMID: 19589948; PMCID: PMC2759708.
Bach L.A., Hale L.J. (2015). Insulin-like growth factors and kidney disease. Am J Kidney Dis., 65(2), 327-336. doi: 10.1053/j.ajkd.2014.05.024. PMID: 25151409.
Shevchenko A.O., Slesareva Iu.S., Shevchenko O.P. (2011). Laboratory diagnosis of atherosclerotic plaque damage in patients with coronary heart disease: PAPP-A (a review of literature). Klin Lab Diagn., 5, 3-10. PMID: 21786607.
Consuegra-Sanchez L., Petrovic I., Cosin-Sales J., Holt D.W., Christiansen M., Kaski J.C. (2008). Prognostic value of circulating pregnancy-associated plasma protein-A (PAPP-A) and proform of eosinophil major basic protein (pro-MBP) levels in patients with chronic stable angina pectoris. Clin Chim Acta., 391(1-2), 18-23. doi: 10.1016/j.cca.2008.01.012. PMID: 18267116.
Hausenloy D.J., Yellon D.M. (2004). New directions for protecting the heart against ischaemia-reperfusion injury: targeting the Reperfusion Injury Salvage Kinase (RISK)-pathway. Cardiovasc Res., 61(3), 448-460. doi: 10.1016/j.cardiores.2003.09.024. PMID: 14962476.
Buerke M., Murohara T., Skurk C., Nuss C., Tomaselli K., Lefer A.M. (1995). Cardioprotective effect of insulin-like growth factor I in myocardial ischemia followed by reperfusion. Proc Natl Acad Sci U S A., 92 (17), 8031-8035. doi: 10.1073/pnas.92.17.8031. PMID: 7644533; PMCID: PMC41280.
Davani E.Y., Brumme Z., Singhera G.K., Côté H.C., Harrigan P.R., Dorscheid D.R. (2003). Insulin-like growth factor-1 protects ischemic murine myocardium from ischemia/reperfusion associated injury. Crit Care., 7(6), 176-183. doi: 10.1186/cc2375. PMID: 14624693; PMCID: PMC374373.
O'Sullivan J.F., Leblond A.L., Kelly G., Kumar A.H., Metharom P., Büneker C.K. et al. (2011). Potent long-term cardioprotective effects of single low-dose insulin-like growth factor-1 treatment postmyocardial infarction. Circ Cardiovasc Interv., 4, 327-335. doi: 10.1161/CIRCINTERVENTIONS.110.960765. PMID: 21712526.
Padin-Iruegas M.E., Misao Y., Davis M.E., Segers V.F., Esposito G., Tokunou T. et al. (2009). Cardiac progenitor cells and biotinylated insulin-like growth factor-1 nanofibers improve endogenous and exogenous myocardial regeneration after infarction. Circulation. 120(10), 876-887. doi: 10.1161/CIRCULATIONAHA.109.852285. PMID: 19704095; PMCID: PMC2913250.
Kin H., Zhao Z.Q., Sun H.Y., Wang N.P., Corvera J.S., Halkos M.E. et al. (2004). Postconditioning attenuates myocardial ischemia-reperfusion injury by inhibiting events in the early minutes of reperfusion. Cardiovasc Res., 62(1), 74-85. doi: 10.1016/j.cardiores.2004.01.006. PMID: 15023554.
Li B., Setoguchi M., Wang X., Andreoli A.M., Leri A., Malhotra A. et al. (1999). Insulin-like growth factor-1 attenuates the detrimental impact of nonocclusive coronary artery constriction on the heart. Circ Res., 84(9), 1007-1019. doi: 10.1161/01.res.84.9.1007. PMID: 10325238.
Redaelli G., Malhotra A., Li B., Li P., Sonnenblick E.H., Hofmann P.A., Anversa P. (1998). Effects of constitutive overexpression of insulin-like growth factor-1 on the mechanical characteristics and molecular properties of ventricular myocytes. Circ Res., 82(5), 594-603. doi: 10.1161/01.res.82.5.594. PMID: 9529164.
Cittadini A., Ishiguro Y., Strömer H., Spindler M., Moses A.C., Clark R. et al. (1998). Insulin-like growth factor-1 but not growth hormone augments mammalian myocardial contractility by sensitizing the myofilament to Ca2+ through a wortmannin-sensitive pathway: studies in rat and ferret isolated muscles. Circ Res., 83(1), 50-59. doi: 10.1161/01.res.83.1.50. PMID: 9670918.
Higashi Y., Gautam S., Delafontaine P., Sukhanov S. (2019). IGF-1 and cardiovascular disease. Growth Horm IGF Res., 45, 6-16. doi: 10.1016/j.ghir.2019.01.002. PMID: 30735831; PMCID: PMC6504961.
Ghosh R., Karmohapatra S.K., Bhattacharyya M., Bhattacharya R., Bhattacharya G., Sinha A.K. (2011). The appearance of dermcidin isoform 2, a novel platelet aggregating agent in the circulation in acute myocardial infarction that inhibits insulin synthesis and the restoration by acetyl salicylic acid of its effects. J Thromb Thrombolysis. 31(1), 13-21. doi: 10.1007/s11239-010-0515-z. PMID: 20809104.
Ray U., Khan G.A., Chakraborty K., Basuroy S., Patra S.C., Girish G. et al. (2012). Isolation and study of insulin activated nitric oxide synthase inhibitory protein in acute myocardial infarction subjects. J Thromb Thrombolysis, 33(3), 218-229. doi: 10.1007/s11239-011-0672-8. PMID: 22238031.
Friberg L., Werner S., Eggertsen G., Ahnve S. (2000). Growth hormone and insulin-like growth factor-1 in acute myocardial infarction. Eur Heart J., 21(18), 1547-1554. doi: 10.1053/euhj.2000.2125. PMID: 10973769.
Spallarossa P., Brunelli C., Minuto F., Caruso D., Battistini M., Caponnetto S., Cordera R. (1996). Insulin-like growth factor-I and angiographically documented coronary artery disease. Am J Cardiol., 77(2), 200-202. doi: 10.1016/s0002-9149(96)90600-1. PMID: 8546095.
Fan J., Wojnar M.M., Theodorakis M., Lang C.H. (1996). Regulation of insulin-like growth factor (IGF)-I mRNA and peptide and IGF-binding proteins by interleukin-1. Am J Physiol., 270(3), 621-629. doi: 10.1152/ajpregu.1996.270.3.R621. PMID: 8780229.
Lang C.H., Fan J., Cooney R., Vary T.C. (1996). IL-1 receptor antagonist attenuates sepsis-induced alterations in the IGF system and protein synthesis. Am J Physiol., 270(3), 430-437. doi: 10.1152/ajpendo.1996.270.3.E430. PMID: 8638689.
Zhang X., Xing H., Qi F., Liu H., Gao L., Wang X. (2020). Local delivery of insulin/IGF-1 for bone regeneration: carriers, strategies, and effects. Nanotheranostics, 4, 242-255. doi: 10.7150/ntno.46408. PMID: 32923314; PMCID: PMC7484631.
Sarzi-Puttini P., Atzeni F., Schölmerich J., Cutolo M., Straub R.H. (2006). Anti-TNF antibody treatment improves glucocorticoid induced insulin-like growth factor 1 (IGF1) resistance without influencing myoglobin and IGF1 binding proteins 1 and 3. Ann Rheum Dis., 65(3), 301-305. doi: 10.1136/ard.2005.040816. Epub 2005 Aug 3. PMID: 16079165; PMCID: PMC1798065.
Salmon A.B., Lerner C., Ikeno Y., Motch Perrine S.M., McCarter R., Sell C. (2015). Altered metabolism and resistance to obesity in long-lived mice producing reduced levels of IGF-I. Am J Physiol Endocrinol Metab., 308(7), 545-553. doi: 10.1152/ajpendo.00558.2014. PMID: 25648834; PMCID: PMC4385875.
Kuemmerle J.F. (2012). Insulin-like growth factors in the gastrointestinal tract and liver. Endocrinol Metab Clin North Am., 41(2), 409-423, vii. doi: 10.1016/j.ecl.2012.04.018. PMID: 22682638; PMCID: PMC3372868.
Aoi N., Nakayama T., Soma M., Kosuge K., Haketa A., Sato M. et al. (2010). Association of the insulin-like growth factor1 gene with myocardial infarction in Japanese subjects. Hereditas, 147(5), 215-24. doi: 10.1111/j.1601-5223.2010.02174.x. PMID: 21039458.
Janssen J.A., Stolk R.P., Pols H.A., Grobbee D.E., Lamberts S.W. (1998). Serum total IGF-I, free IGF-I, and IGFB-1 levels in an elderly population: relation to cardiovascular risk factors and disease. Arterioscler Thromb Vasc Biol., 18(2), 277-282. doi: 10.1161/01.atv.18.2.277. PMID: 9484994.
Juul A., Scheike T., Davidsen M., Gyllenborg J., Jørgensen T. (2002). Low serum insulin-like growth factor I is associated with increased risk of ischemic heart disease: a population-based case-control study. Circulation, 106(8), 939-944. doi: 10.1161/01.cir.0000027563.44593.cc. PMID: 12186797.
Ittermann T., Noord Cv., Friedrich N., Dörr M., Felix S.B., Nauck M. et al. (2012). The association between insulin-like growth factor-I and cardiac repolarization. Growth Horm IGF Res., 22(1), 1-5. doi: 10.1016/j.ghir.2011.11.001. PMID: 22154520.
Schneider H.J., Klotsche J., Saller B., Böhler S., Sievers C., Pittrow D. et al. (2008). Associations of age-dependent IGF-I SDS with cardiovascular diseases and risk conditions: cross-sectional study in 6773 primary care patients. Eur J Endocrinol., 158(2), 153-61. doi: 10.1530/EJE-07-0600. PMID: 18230821.
Burchardt P., Tabaczewski P., Goździcka-Józefiak A., Siminiak T., Szczepaniak A., Banaszak A., Wysocki H. (2012). Association between insulin like growth factor-1 and lipoprotein metabolism in stable angina patients on statin therapy: a pilot study. Kardiol Pol., 70(10), 1017-1022. PMID: 23080092.
Martovytskyi D., Kravchun P., Shelest O. (2018). Effect of obesity presence on insulin-like growth factor-1 and endostatin in patients with myocardial infarction. Georgian Med News, 284, 55-58. PMID: 30618390.
Colao A., Spiezia S., Di Somma C., Pivonello R., Marzullo P., Rota F. et al. (2005). Circulating insulin-like growth factor-I levels are correlated with the atherosclerotic profile in healthy subjects independently of age. J Endocrinol Invest., 28(5), 440-8. doi: 10.1007/BF03347225. PMID: 16075928.
Andrade D., Oliveira G., Menezes L., Nascimento A.L., Carvalho S., Stumbo A.C. et al. (2020). Insulin-like growth factor-1 short-period therapy improves cardiomyopathy stimulating cardiac progenitor cells survival in obese mice. Nutr Metab Cardiovasc Dis., 30(1), 151-161. doi: 10.1016/j.numecd.2019.09.001. PMID: 31753790.
Conti E., Andreotti F., Sciahbasi A., Riccardi P., Marra G., Menini E. et al. (2001). Markedly reduced insulin-like growth factor-1 in the acute phase of myocardial infarction. J Am Coll Cardiol., 38(1), 26-32. doi: 10.1016/s0735-1097(01)01367-5. PMID: 11451284.
Davis M.E., Hsieh P.C., Takahashi T., Song Q., Zhang S., Kamm R.D. et al. (2006). Local myocardial insulin-like growth factor 1 (IGF-1) delivery with biotinylated peptide nanofibers improves cell therapy for myocardial infarction. Proc Natl Acad Sci U S A, 103(21), 8155-8160. doi: 10.1073/pnas.0602877103. PMID: 16698918; PMCID: PMC1472445.
"Inter Collegas" is an open access journal: all articles are published in open access without an embargo period, under the terms of the CC BY-NC-SA (Creative Commons Attribution ‒ Noncommercial ‒ Share Alike) license; the content is available to all readers without registration from the moment of its publication. Electronic copies of the archive of journals are placed in the repositories of the KhNMU and V.I. Vernadsky National Library of Ukraine.