FLOW CYTOMETRY IN NANOTOXICOLOGY
PDF

Keywords

nanomaterials
nanoparticles
cytotoxicity
cell death
reactive oxygen species

Abstract

The paper deals with the role of flow cytometry in assessing the biocompatibility and safety profiles of nanomaterials. Flow cytometry is a powerful tool to characterize the impact of various exogenous factors on different cell populations due to its ability to register optical and fluorescence characteristics of cells analyzing multiple parameters simultaneously. An overview of flow cytometry application for evaluating the redox state of cells, viability and cell death modes (apoptosis, necrosis, necroptosis, pyroptosis, autophagy), and pro-inflammatory effects of nanoparticles is provided.

Flow cytometry offers rapid, informative, quite cost-effective and multi-angled analysis of safety profiles of nanomaterials taking into account the key mechanisms of their toxic action. Recent advances in flow cytometry technologies and the availability of commercial automated cell counters make flow cytometry a convenient research tool for in vitro nanotoxicology. However, the field requires the development of standardized flow cytometry protocols for nanotoxicity testing.

https://doi.org/10.35339/ic.8.4.278-289
PDF

References

Jeevanandam, J., Barhoum, A., Chan, Y. S., Dufresne, A., & Danquah, M. K. (2018). Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein journal of nanotechnology, 9, 1050–1074. https://doi.org/10.3762/bjnano.9.98

Zhang, L., Gu, F. X., Chan, J. M., Wang, A. Z., Langer, R. S., & Farokhzad, O. C. (2008). Nanoparticles in medicine: therapeutic applications and developments. Clinical pharmacology and therapeutics, 83(5), 761–769. https://doi.org/10.1038/sj.clpt.6100400

Joo J. (2021). Diagnostic and Therapeutic Nanomedicine. Advances in experimental medicine and biology, 1310, 401–447. https://doi.org/10.1007/978-981-33-6064-8_15

Abd Elkodous, M., El-Sayyad, G. S., Abdelrahman, I. Y., El-Bastawisy, H. S., Mohamed, A. E., Mosallam, F. M., …, El-Batal, A. I. (2019). Therapeutic and diagnostic potential of nanomaterials for enhanced biomedical applications. Colloids Surf B Biointerfaces. 180, 411-428. doi: 10.1016/j.colsurfb.2019.05.008.

Bayford, R., Rademacher, T., Roitt, I., & Wang, S. X. (2017). Emerging applications of nanotechnology for diagnosis and therapy of disease: a review. Physiological measurement, 38(8), R183–R203. https://doi.org/10.1088/1361-6579/aa7182

Naresh, V., & Lee, N. (2021). A Review on Biosensors and Recent Development of Nanostructured Materials-Enabled Biosensors. Sensors (Basel, Switzerland), 21(4), 1109. https://doi.org/10.3390/s21041109

Jianrong, C., Yuqing, M., Nongyue, H., Xiaohua, W., & Sijiao, L. (2004). Nanotechnology and biosensors. Biotechnology advances, 22(7), 505–518. https://doi.org/10.1016/j.biotechadv.2004.03.004

Hemeg H. A. (2017). Nanomaterials for alternative antibacterial therapy. International journal of nanomedicine, 12, 8211–8225. https://doi.org/10.2147/IJN.S132163

Hoseinzadeh, E., Makhdoumi, P., Taha, P., Hossini, H., Stelling, J., Kamal, M. A., & Ashraf, G. M. (2017). A Review on Nano-Antimicrobials: Metal Nanoparticles, Methods and Mechanisms. Current drug metabolism, 18(2), 120–128. https://doi.org/10.2174/1389200217666161201111146

Begines, B., Ortiz, T., Pérez-Aranda, M., Martínez, G., Merinero, M., Argüelles-Arias, F., & Alcudia, A. (2020). Polymeric Nanoparticles for Drug Delivery: Recent Developments and Future Prospects. Nanomaterials (Basel, Switzerland), 10(7), 1403. https://doi.org/10.3390/nano10071403

De Jong, W. H., & Borm, P. J. (2008). Drug delivery and nanoparticles:applications and hazards. International journal of nanomedicine, 3(2), 133–149. https://doi.org/10.2147/ijn.s596

Pinto, A., & Pocard, M. (2018). Photodynamic therapy and photothermal therapy for the treatment of peritoneal metastasis: a systematic review. Pleura and peritoneum, 3(4), 20180124. https://doi.org/10.1515/pp-2018-0124

Caspani, S., Magalhães, R., Araújo, J. P., & Sousa, C. T. (2020). Magnetic Nanomaterials as Contrast Agents for MRI. Materials (Basel, Switzerland), 13(11), 2586. https://doi.org/10.3390/ma13112586

Ahmadi, S., Rabiee, N., Fatahi, Y., Bagherzadeh, M., Gachpazan, M., Baheiraei, N., … Hamblin, M. R. (2020). Controlled Gene Delivery Systems: Nanomaterials and Chemical Approaches. Journal of biomedical nanotechnology, 16(5), 553–582. https://doi.org/10.1166/jbn.2020.2927.

Chakrabarti, S., Chattopadhyay, P., Islam, J., Ray, S., Raju, P. S., & Mazumder, B. (2019). Aspects of Nanomaterials in Wound Healing. Current drug delivery, 16(1), 26–41. https://doi.org/10.2174/1567201815666180918110134.

Kalashnikova, I., Das, S., & Seal, S. (2015). Nanomaterials for wound healing: scope and advancement. Nanomedicine (London, England), 10(16), 2593–2612. https://doi.org/10.2217/NNM.15.82.

Wu, L. P., Wang, D., & Li, Z. (2020). Grand challenges in nanomedicine. Materials science & engineering. C, Materials for biological applications, 106, 110302. https://doi.org/10.1016/j.msec.2019.110302.

Hua, S., & Wu, S. Y. (2018). Editorial: Advances and Challenges in Nanomedicine. Frontiers in pharmacology, 9, 1397. https://doi.org/10.3389/fphar.2018.01397.

Tirumala, M. G., Anchi, P., Raja, S., Rachamalla, M., & Godugu, C. (2021). Novel Methods and Approaches for Safety Evaluation of Nanoparticle Formulations: A Focus Towards In Vitro Models and Adverse Outcome Pathways. Frontiers in pharmacology, 12, 612659. https://doi.org/10.3389/fphar.2021.612659.

Akçan, R., Aydogan, H. C., Yildirim, M. Ş., Taştekin, B., & Sağlam, N. (2020). Nanotoxicity: a challenge for future medicine. Turkish journal of medical sciences, 50(4), 1180–1196. https://doi.org/10.3906/sag-1912-209.

Buchman, J. T., Hudson-Smith, N. V., Landy, K. M., & Haynes, C. L. (2019). Understanding Nanoparticle Toxicity Mechanisms To Inform Redesign Strategies To Reduce Environmental Impact. Accounts of chemical research, 52(6), 1632–1642. https://doi.org/10.1021/acs.accounts.9b00053.

Huang, Y. W., Cambre, M., & Lee, H. J. (2017). The Toxicity of Nanoparticles Depends on Multiple Molecular and Physicochemical Mechanisms. International journal of molecular sciences, 18(12), 2702. https://doi.org/10.3390/ijms18122702.

Khalili Fard, J., Jafari, S., & Eghbal, M. A. (2015). A Review of Molecular Mechanisms Involved in Toxicity of Nanoparticles. Advanced pharmaceutical bulletin, 5(4), 447–454. https://doi.org/10.15171/apb.2015.061.

Yu, Z., Li, Q., Wang, J., Yu, Y., Wang, Y., Zhou, Q., & Li, P. (2020). Reactive Oxygen Species-Related Nanoparticle Toxicity in the Biomedical Field. Nanoscale research letters, 15(1), 115. https://doi.org/10.1186/s11671-020-03344-7.

Masoud, R., Bizouarn, T., Trepout, S., Wien, F., Baciou, L., Marco, S., & Houée Levin, C. (2015). Titanium Dioxide Nanoparticles Increase Superoxide Anion Production by Acting on NADPH Oxidase. PloS one, 10(12), e0144829. https://doi.org/10.1371/journal.pone.0144829.

Manke, A., Wang, L., & Rojanasakul, Y. (2013). Mechanisms of nanoparticle-induced oxidative stress and toxicity. BioMed research international, 2013, 942916. https://doi.org/10.1155/2013/942916.

Alarifi, S., Ali, D., Alkahtani, S., & Almeer, R. S. (2017). ROS-Mediated Apoptosis and Genotoxicity Induced by Palladium Nanoparticles in Human Skin Malignant Melanoma Cells. Oxidative medicine and cellular longevity, 2017, 8439098. https://doi.org/10.1155/2017/8439098.

Jawaid, P., Rehman, M. U., Zhao, Q. L. Misawa, M., Ishikawa, K., Hori, M., Shimizu, T., … Kondo, T. (2020). Small size gold nanoparticles enhance apoptosis-induced by cold atmospheric plasma via depletion of intracellular GSH and modification of oxidative stress. Cell Death Discov. 6, 83. https://doi.org/10.1038/s41420-020-00314-x

Mohammadinejad, R., Moosavi, M. A., Tavakol, S., Vardar, D. Ö., Hosseini, A., Rahmati, M., … Klionsky, D. J. (2019). Necrotic, apoptotic and autophagic cell fates triggered by nanoparticles. Autophagy, 15(1), 4–33. https://doi.org/10.1080/15548627.2018.1509171.

Kaczmarek, A., Vandenabeele, P., & Krysko, D. V. (2013). Necroptosis: the release of damage-associated molecular patterns and its physiological relevance. Immunity, 38(2), 209–223. https://doi.org/10.1016/j.immuni.2013.02.003.

Feng, X., Zhang, Y., Zhang, C., Lai, X., Zhang, Y., Wu, J….. Shao, L. (2020). Nanomaterial-mediated autophagy: coexisting hazard and health benefits in biomedicine. Particle and fibre toxicology, 17(1), 53. https://doi.org/10.1186/s12989-020-00372-0.

Khandia, R., Dadar, M., Munjal, A., Dhama, K., Karthik, K., Tiwari, R., … Chaicumpa, W. (2019). A Comprehensive Review of Autophagy and Its Various Roles in Infectious, Non-Infectious, and Lifestyle Diseases: Current Knowledge and Prospects for Disease Prevention, Novel Drug Design, and Therapy. Cells, 8(7), 674. https://doi.org/10.3390/cells8070674.

Cordani, M., & Somoza, Á. (2019). Targeting autophagy using metallic nanoparticles: a promising strategy for cancer treatment. Cellular and molecular life sciences : CMLS, 76(7), 1215–1242. https://doi.org/10.1007/s00018-018-2973-y.

Yu, P., Zhang, X., Liu, N., Tang, L., Peng, C., & Chen, X. (2021). Pyroptosis: mechanisms and diseases. Signal transduction and targeted therapy, 6(1), 128. https://doi.org/10.1038/s41392-021-00507-5.

Robinson, N., Ganesan, R., Hegedűs, C., Kovács, K., Kufer, T. A., & Virág, L. (2019). Programmed necrotic cell death of macrophages: Focus on pyroptosis, necroptosis, and parthanatos. Redox biology, 26, 101239. https://doi.org/10.1016/j.redox.2019.101239.

Zhao, P., Wang, M., Chen, M., Chen, Z., Peng, X., Zhou, F., … Qu, J. (2020). Programming cell pyroptosis with biomimetic nanoparticles for solid tumor immunotherapy. Biomaterials, 254, 120142. https://doi.org/10.1016/j.biomaterials.2020.120142.

Reisetter, A. C., Stebounova, L. V., Baltrusaitis, J., Powers, L., Gupta, A., Grassian, V. H., & Monick, M. M. (2011). Induction of inflammasome-dependent pyroptosis by carbon black nanoparticles. The Journal of biological chemistry, 286(24), 21844–21852. https://doi.org/10.1074/jbc.M111.238519.

Abais, J. M., Xia, M., Zhang, Y., Boini, K. M., & Li, P. L. (2015). Redox regulation of NLRP3 inflammasomes: ROS as trigger or effector?. Antioxidants & redox signaling, 22(13), 1111–1129. https://doi.org/10.1089/ars.2014.5994.

Elsabahy, M., & Wooley, K. L. (2013). Cytokines as biomarkers of nanoparticle immunotoxicity. Chemical Society reviews, 42(12), 5552–5576. https://doi.org/10.1039/c3cs60064e.

Di Gioacchino, M., Petrarca, C., Lazzarin, F., Di Giampaolo, L., Sabbioni, E., Boscolo, P., Mariani-Costantini, R., & Bernardini, G. (2011). Immunotoxicity of nanoparticles. International journal of immunopathology and pharmacology, 24(1 Suppl), 65S–71S.

Horie, M., & Tabei, Y. (2021). Role of oxidative stress in nanoparticles toxicity. Free radical research, 55(4), 331–342. https://doi.org/10.1080/10715762.2020.1859108.

Meng, X. M., Nikolic-Paterson, D. J., & Lan, H. Y. (2016). TGF-β: the master regulator of fibrosis. Nature reviews. Nephrology, 12(6), 325–338. https://doi.org/10.1038/nrneph.2016.48.

Liu, R. M., & Desai, L. P. (2015). Reciprocal regulation of TGF-β and reactive oxygen species: A perverse cycle for fibrosis. Redox biology, 6, 565–577. https://doi.org/10.1016/j.redox.2015.09.009.

Yu, Y., Duan, J., Li, Y., Li, Y., Jing, L., Yang, M., … Sun, Z. (2017). Silica nanoparticles induce liver fibrosis via TGF-β1/Smad3 pathway in ICR mice. International journal of nanomedicine, 12, 6045–6057. https://doi.org/10.2147/IJN.S132304.

Huang, K. T., Wu, C. T., Huang, K. H., Lin, W. C., Chen, C. M., Guan, S. S., … Liu, S. H. (2015). Titanium nanoparticle inhalation induces renal fibrosis in mice via an oxidative stress upregulated transforming growth factor-β pathway. Chemical research in toxicology, 28(3), 354–364. https://doi.org/10.1021/tx500287f.

Sklar, L. A., Carter, M. B., & Edwards, B. S. (2007). Flow cytometry for drug discovery, receptor pharmacology and high-throughput screening. Current opinion in pharmacology, 7(5), 527–534. https://doi.org/10.1016/j.coph.2007.06.006.

Manohar, S. M., Shah, P., & Nair, A. (2021). Flow cytometry: principles, applications and recent advances. Bioanalysis, 13(3), 181–198. https://doi.org/10.4155/bio-2020-0267.

Adan, A., Alizada, G., Kiraz, Y., Baran, Y., & Nalbant, A. (2017). Flow cytometry: basic principles and applications. Critical reviews in biotechnology, 37(2), 163–176. https://doi.org/10.3109/07388551.2015.1128876.

Sharma, R., Sharma, A., Kumar, A., & Jaganathan, B. G. (2019). Phospho-protein Analysis in Adherent Cells Using Flow Cytometry. Bio-protocol, 9(20), e3395. https://doi.org/10.21769/BioProtoc.3395.

Stauber J., Franklin N., Adams M. (2005) Microalgal Toxicity Tests Using Flow Cytometry. In: Blaise C., Férard JF. (eds) Small-scale Freshwater Toxicity Investigations. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3120-3_6

Li, Z., Yang, M., & Zhou, J. (2004). Wei sheng yan jiu = Journal of hygiene research, 33(4), 504–507.

Tuschl, H., & Schwab, C. E. (2004). Flow cytometric methods used as screening tests for basal toxicity of chemicals. Toxicology in vitro : an international journal published in association with BIBRA, 18(4), 483–491. https://doi.org/10.1016/j.tiv.2003.12.004.

Wu, L., Sedgwick, A. C., Sun, X., Bull, S. D., He, X. P., & James, T. D. (2019). Reaction-Based Fluorescent Probes for the Detection and Imaging of Reactive Oxygen, Nitrogen, and Sulfur Species. Accounts of chemical research, 52(9), 2582–2597. https://doi.org/10.1021/acs.accounts.9b00302.

Shehat, M. G., & Tigno-Aranjuez, J. (2019). Flow Cytometric Measurement Of ROS Production In Macrophages In Response To FcγR Cross-linking. Journal of visualized experiments : JoVE, (145), 10.3791/59167. https://doi.org/10.3791/59167.

Onishchenko, A., Myasoedov, V., Yefimova, S., Nakonechna, O., Prokopyuk, V., Butov, D., … Tkachenko, A. (2021). UV Light-Activated GdYVO4:Eu3+ Nanoparticles Induce Reactive Oxygen Species Generation in Leukocytes Without Affecting Erythrocytes In Vitro. Biological trace element research, 10.1007/s12011-021-02867-z. Advance online publication. https://doi.org/10.1007/s12011-021-02867-z.

Tkachenko, A. S., Klochkov, V. K., Lesovoy, V. N., Myasoedov, V. V., Kavok, N. S., Onishchenko, A. I., … Posokhov, Y. O. (2020). Orally administered gadolinium orthovanadate GdVO4:Eu3+ nanoparticles do not affect the hydrophobic region of cell membranes of leukocytes. Wiener medizinische Wochenschrift (1946), 170(7-8), 189–195. https://doi.org/10.1007/s10354-020-00735-4.

Kermanizadeh, A., Jantzen, K., Brown, D. M., Møller, P., & Loft, S. (2018). A Flow Cytometry-based Method for the Screening of Nanomaterial-induced Reactive Oxygen Species Production in Leukocytes Subpopulations in Whole Blood. Basic & clinical pharmacology & toxicology, 122(1), 149–156. https://doi.org/10.1111/bcpt.12845.

Zhang, L., Wu, L., Si, Y., & Shu, K. (2018). Size-dependent cytotoxicity of silver nanoparticles to Azotobacter vinelandii: Growth inhibition, cell injury, oxidative stress and internalization. PloS one, 13(12), e0209020. https://doi.org/10.1371/journal.pone.0209020.

Gu, Y., Wang, Y., Zhou, Q., Bowman, L., Mao, G., Zou, B., …Ding, M. (2016). Inhibition of Nickel Nanoparticles-Induced Toxicity by Epigallocatechin-3-Gallate in JB6 Cells May Be through Down-Regulation of the MAPK Signaling Pathways. PloS one, 11(3), e0150954. https://doi.org/10.1371/journal.pone.0150954.

Han, J. W., Gurunathan, S., Jeong, J. K., Choi, Y. J., Kwon, D. N., Park, J. K., & Kim, J. H. (2014). Oxidative stress mediated cytotoxicity of biologically synthesized silver nanoparticles in human lung epithelial adenocarcinoma cell line. Nanoscale research letters, 9(1), 459. https://doi.org/10.1186/1556-276X-9-459.

Zhao, J., Bowman, L., Magaye, R., Leonard, S. S., Castranova, V., & Ding, M. (2013). Apoptosis induced by tungsten carbide-cobalt nanoparticles in JB6 cells involves ROS generation through both extrinsic and intrinsic apoptosis pathways. Int J Oncol. 42, 1349–59.

Zielonka, J., & Kalyanaraman, B. (2010). Hydroethidine- and MitoSOX-derived red fluorescence is not a reliable indicator of intracellular superoxide formation: another inconvenient truth. Free radical biology & medicine, 48(8), 983–1001. https://doi.org/10.1016/j.freeradbiomed.2010.01.028.

Wang, Q., & Zou, M. H. (2018). Measurement of Reactive Oxygen Species (ROS) and Mitochondrial ROS in AMPK Knockout Mice Blood Vessels. Methods in molecular biology (Clifton, N.J.), 1732, 507–517. https://doi.org/10.1007/978-1-4939-7598-3_32.

Sadhu, A., Ghosh, I., Moriyasu, Y., Mukherjee, A., & Bandyopadhyay, M. (2018). Role of cerium oxide nanoparticle-induced autophagy as a safeguard to exogenous H2O2-mediated DNA damage in tobacco BY-2 cells. Mutagenesis, 33(2), 161–177. https://doi.org/10.1093/mutage/gey004.

Lehman, S. E., Morris, A. S., Mueller, P. S., Salem, A. K., Grassian, V. H., & Larsen, S. C. (2016). Silica Nanoparticle-Generated ROS as a Predictor of Cellular Toxicity: Mechanistic Insights and Safety by Design. Environmental science. Nano, 3(1), 56–66. https://doi.org/10.1039/C5EN00179J.

Quan, J. H., Gao, F. F., Ismail, H., Yuk, J. M., Cha, G. H., Chu, J. Q., & Lee, Y. H. (2020). Silver Nanoparticle-Induced Apoptosis in ARPE-19 Cells Is Inhibited by Toxoplasma gondii Pre-Infection Through Suppression of NOX4-Dependent ROS Generation. International journal of nanomedicine, 15, 3695–3716. https://doi.org/10.2147/IJN.S244785.

Sabido, O., Figarol, A., Klein, J. P., Bin, V., Forest, V., Pourchez, J.,…Boudard, D. (2020). Quantitative Flow Cytometric Evaluation of Oxidative Stress and Mitochondrial Impairment in RAW 264.7 Macrophages after Exposure to Pristine, Acid Functionalized, or Annealed Carbon Nanotubes. Nanomaterials (Basel, Switzerland), 10(2), 319. https://doi.org/10.3390/nano10020319.

Wlodkowic, D., Skommer, J., & Darzynkiewicz, Z. (2009). Flow cytometry-based apoptosis detection. Methods in molecular biology (Clifton, N.J.), 559, 19–32. https://doi.org/10.1007/978-1-60327-017-5_2.

Zimmermann, M., & Meyer, N. (2011). Annexin V/7-AAD staining in keratinocytes. Methods in molecular biology (Clifton, N.J.), 740, 57–63. https://doi.org/10.1007/978-1-61779-108-6_8.

Vuković, B., Milić, M., Dobrošević, B., Milić, M., Ilić, K., Pavičić, I., …Vrček, I. V. (2020). Surface Stabilization Affects Toxicity of Silver Nanoparticles in Human Peripheral Blood Mononuclear Cells. Nanomaterials (Basel, Switzerland), 10(7), 1390. https://doi.org/10.3390/nano10071390.

Yang, Y., Du, X., Wang, Q., Liu, J., Zhang, E., Sai, L.,…Du, Z. (2019). Mechanism of cell death induced by silica nanoparticles in hepatocyte cells is by apoptosis. International journal of molecular medicine, 44(3), 903–912. https://doi.org/10.3892/ijmm.2019.4265.

Azizi, M., Ghourchian, H., Yazdian, F., Dashtestani, F., & AlizadehZeinabad, H. (2017). Cytotoxic effect of albumin coated copper nanoparticle on human breast cancer cells of MDA-MB 231. PloS one, 12(11), e0188639. https://doi.org/10.1371/journal.pone.0188639.

Wu, X., Wang, L., Qiu, Y., Zhang, B., Hu, Z., & Jin, R. (2017). Cooperation of IRAK1/4 inhibitor and ABT-737 in nanoparticles for synergistic therapy of T cell acute lymphoblastic leukemia. International journal of nanomedicine, 12, 8025–8034. https://doi.org/10.2147/IJN.S146875.

Kumar, G., Degheidy, H., Casey, B. J., & Goering, P. L. (2015). Flow cytometry evaluation of in vitro cellular necrosis and apoptosis induced by silver nanoparticles. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association, 85, 45–51. https://doi.org/10.1016/j.fct.2015.06.012.

Kai, W., Xiaojun, X., Ximing, P., Zhenqing, H., & Qiqing, Z. (2011). Cytotoxic effects and the mechanism of three types of magnetic nanoparticles on human hepatoma BEL-7402 cells. Nanoscale research letters, 6(1), 480. https://doi.org/10.1186/1556-276X-6-480.

Lu, X., Qian, J., Zhou, H., Gan, Q., Tang, W., Lu, J.,…Liu, C. (2011). In vitro cytotoxicity and induction of apoptosis by silica nanoparticles in human HepG2 hepatoma cells. International journal of nanomedicine, 6, 1889–1901. https://doi.org/10.2147/IJN.S24005.

Crowley, L. C., & Waterhouse, N. J. (2016). Detecting Cleaved Caspase-3 in Apoptotic Cells by Flow Cytometry. Cold Spring Harbor protocols, 2016(11), 10.1101/pdb.prot087312. https://doi.org/10.1101/pdb.prot087312.

Plackal Adimuriyil George, B., Kumar, N., Abrahamse, H., & Ray, S. S. (2018). Apoptotic efficacy of multifaceted biosynthesized silver nanoparticles on human adenocarcinoma cells. Scientific reports, 8(1), 14368. https://doi.org/10.1038/s41598-018-32480-5.

Ma, W., Jing, L., Valladares, A., Mehta, S. L., Wang, Z., Li, P. A., & Bang, J. J. (2015). Silver nanoparticle exposure induced mitochondrial stress, caspase-3 activation and cell death: amelioration by sodium selenite. International journal of biological sciences, 11(8), 860–867. https://doi.org/10.7150/ijbs.12059.

Zorova, L. D., Popkov, V. A., Plotnikov, E. Y., Silachev, D. N., Pevzner, I. B., Jankauskas, S. S.,…Zorov, D. B. (2018). Mitochondrial membrane potential. Analytical biochemistry, 552, 50–59. https://doi.org/10.1016/j.ab.2017.07.009.

Ly, J. D., Grubb, D. R., & Lawen, A. (2003). The mitochondrial membrane potential (deltapsi(m)) in apoptosis; an update. Apoptosis : an international journal on programmed cell death, 8(2), 115–128. https://doi.org/10.1023/a:1022945107762.

Zhao, M. X., Cai, Z. C., Zhu, B. J., & Zhang, Z. Q. (2018). The Apoptosis Effect on Liver Cancer Cells of Gold Nanoparticles Modified with Lithocholic Acid. Nanoscale research letters, 13(1), 304. https://doi.org/10.1186/s11671-018-2653-8.

Barbosa, L. A., Fiuza, P. P., Borges, L. J., Rolim, F. A., Andrade, M. B., Luz, N. F., … Prates, D. B. (2018). RIPK1-RIPK3-MLKL-Associated Necroptosis Drives Leishmania infantum Killing in Neutrophils. Frontiers in immunology, 9, 1818. https://doi.org/10.3389/fimmu.2018.01818

Zhan, C., Huang, M., Yang, X., & Hou, J. (2021). MLKL: Functions beyond serving as the Executioner of Necroptosis. Theranostics, 11(10), 4759–4769. https://doi.org/10.7150/thno.54072

Pietkiewicz, S., Schmidt, J. H., & Lavrik, I. N. (2015). Quantification of apoptosis and necroptosis at the single cell level by a combination of Imaging Flow Cytometry with classical Annexin V/propidium iodide staining. Journal of immunological methods, 423, 99–103. https://doi.org/10.1016/j.jim.2015.04.025

Lee, H. L., Pike, R., Chong, M., Vossenkamper, A., & Warnes, G. (2018). Simultaneous flow cytometric immunophenotyping of necroptosis, apoptosis and RIP1-dependent apoptosis. Methods (San Diego, Calif.), 134-135, 56–66. https://doi.org/10.1016/j.ymeth.2017.10.013

Sonkusre, P., & Cameotra, S. S. (2017). Biogenic selenium nanoparticles induce ROS-mediated necroptosis in PC-3 cancer cells through TNF activation. Journal of nanobiotechnology, 15(1), 43. https://doi.org/10.1186/s12951-017-0276-3

Niu, Y., Tang, E., & Zhang, Q. (2019). Cytotoxic effect of silica nanoparticles against hepatocellular carcinoma cells through necroptosis induction. Toxicology research, 8(6), 1042–1049. https://doi.org/10.1039/c9tx00240e

Wang, Y. C., Liu, Q. X., Liu, T., Xu, X. E., Gao, W., Bai, X. J., & Li, Z. F. (2018). Caspase-1-dependent pyroptosis of peripheral blood mononuclear cells predicts the development of sepsis in severe trauma patients: A prospective observational study. Medicine, 97(8), e9859. https://doi.org/10.1097/MD.0000000000009859

Warnes G. (2015). Flow cytometric assays for the study of autophagy. Methods (San Diego, Calif.), 82, 21–28. https://doi.org/10.1016/j.ymeth.2015.03.027

Chikte, S., Panchal, N., & Warnes, G. (2014). Use of LysoTracker dyes: a flow cytometric study of autophagy. Cytometry. Part A : the journal of the International Society for Analytical Cytology, 85(2), 169–178. https://doi.org/10.1002/cyto.a.22312

Liu, Z., Lv, X., Xu, L., Liu, X., Zhu, X., Song, E., & Song, Y. (2020). Zinc oxide nanoparticles effectively regulate autophagic cell death by activating autophagosome formation and interfering with their maturation. Particle and fibre toxicology, 17(1), 46. https://doi.org/10.1186/s12989-020-00379-7

Wang, F., Salvati, A., & Boya, P. (2018). Lysosome-dependent cell death and deregulated autophagy induced by amine-modified polystyrene nanoparticles. Open biology, 8(4), 170271. https://doi.org/10.1098/rsob.170271

Kiefer, J., Zeller, J., Bogner, B., Hörbrand, I. A., Lang, F., Deiss, E., …. Eisenhardt, S. U. (2021). An Unbiased Flow Cytometry-Based Approach to Assess Subset-Specific Circulating Monocyte Activation and Cytokine Profile in Whole Blood. Frontiers in immunology, 12, 641224. https://doi.org/10.3389/fimmu.2021.641224

Smith, S. G., Smits, K., Joosten, S. A., van Meijgaarden, K. E., Satti, I., Fletcher, H. A., …. TBVI TB Biomarker Working Group (2015). Intracellular Cytokine Staining and Flow Cytometry: Considerations for Application in Clinical Trials of Novel Tuberculosis Vaccines. PloS one, 10(9), e0138042. https://doi.org/10.1371/journal.pone.0138042

Michelini, S., Barbero, F., Prinelli, A., Steiner, P., Weiss, R., Verwanger, T., … Horejs-Hoeck, J. (2021). Gold nanoparticles (AuNPs) impair LPS-driven immune responses by promoting a tolerogenic-like dendritic cell phenotype with altered endosomal structures. Nanoscale, 13(16), 7648–7666. https://doi.org/10.1039/d0nr09153g

Hazan-Halevy, I., Rosenblum, D., Ramishetti, S., & Peer, D. (2019). Systemic Modulation of Lymphocyte Subsets Using siRNAs Delivered via Targeted Lipid Nanoparticles. Methods in molecular biology (Clifton, N.J.), 1974, 151–159. https://doi.org/10.1007/978-1-4939-9220-1_11

Brzóska, K., Grądzka, I., & Kruszewski, M. (2018). Impact of silver, gold, and iron oxide nanoparticles on cellular response to tumor necrosis factor. Toxicology and applied pharmacology, 356, 140–150. https://doi.org/10.1016/j.taap.2018.08.005

Bancos, S., Stevens, D. L., & Tyner, K. M. (2014). Effect of silica and gold nanoparticles on macrophage proliferation, activation markers, cytokine production, and phagocytosis in vitro. International journal of nanomedicine, 10, 183–206. https://doi.org/10.2147/IJN.S72580

Strehl, C., Gaber, T., Maurizi, L., Hahne, M., Rauch, R., Hoff, P., … Buttgereit, F. (2015). Effects of PVA coated nanoparticles on human immune cells. International journal of nanomedicine, 10, 3429–3445. https://doi.org/10.2147/IJN.S75936

Gamucci, O., Bertero, A., Malvindi, M. A., Sabella, S., Pompa, P. P., Mazzolai, B., & Bardi, G. (2014). Detection of fluorescent nanoparticle interactions with primary immune cell subpopulations by flow cytometry. Journal of visualized experiments : JoVE, (85), 51345. https://doi.org/10.3791/51345

Hardy, C. L., Lemasurier, J. S., Mohamud, R., Yao, J., Xiang, S. D., Rolland, J. M. … Plebanski, M. (2013). Differential uptake of nanoparticles and microparticles by pulmonary APC subsets induces discrete immunological imprints. Journal of immunology (Baltimore, Md. : 1950), 191(10), 5278–5290. https://doi.org/10.4049/jimmunol.1203131

Kourtis, I. C., Hirosue, S., de Titta, A., Kontos, S., Stegmann, T., Hubbell, J. A., & Swartz, M. A. (2013). Peripherally administered nanoparticles target monocytic myeloid cells, secondary lymphoid organs and tumors in mice. PloS one, 8(4), e61646. https://doi.org/10.1371/journal.pone.0061646

Hanley, C., Thurber, A., Hanna, C., Punnoose, A., Zhang, J., & Wingett, D. G. (2009). The Influences of Cell Type and ZnO Nanoparticle Size on Immune Cell Cytotoxicity and Cytokine Induction. Nanoscale research letters, 4(12), 1409–1420. https://doi.org/10.1007/s11671-009-9413-8

Ostermann, M., Sauter, A., Xue, Y., Birkeland, E., Schoelermann, J., Holst, B., & Cimpan, M. R. (2020). Label-free impedance flow cytometry for nanotoxicity screening. Scientific reports, 10(1), 142. https://doi.org/10.1038/s41598-019-56705-3

Copyright for articles published in the journal is regulated by the License Agreement for the use of a scientific article in the journal, which is concluded between the author of the article (Licensor) and Kharkov National Medical University (Licensee, publisher of the journal "Inter Collegas"). The licensor grants to the Licensee a non-exclusive non-exclusive license for the use of the article (a license that does not exclude the use of the article by the Licensor and the issuance of licenses to others for use of this article) on the terms and for the period specified in the contract. The licensor (the author of the article) grants the Licensee the right to reproduce the article (publication in the journal "Inter Collegas", publication, duplication, duplication or other reproduction of the article without limiting the circulation of copies, each copy of the article must contain the name of the Licensor; Of general information, including the publication of the article in full or in part on the Internet on the journal page, the right to use the metadata of the article (titles, full names of authors, annotations, bibliography eskih materials) through the dissemination and communication to the public, processing and systematization, as well as inclusion in various databases and in-formational system).

The licensor grants the licensee the right to transfer, store and process his personal data (full name, scientific degree, academic title, place of work and position, contact information of the authors) with the purpose of including them in the database in accordance with the Law of Ukraine No. 2297 - VI "on protection of personal data" from 01.06.2010.

Personal data and metadata of the article are provided for their storage and processing in various databases and information systems, including them in analytical and statistical reporting, creating sound relationships between the objects of works of science, literature and art with personal data, etc. on unlimited territory. The licensee has the right to transfer the specified data for processing and storage to third parties provided that such a fact is notified with the provision of information about the third party (name and address) to the Licensor.