SIMULATION OF EPIDEMIC PROCESSES: A REVIEW OF MODERN METHODS, MODELS AND APPROACHES
PDF

Keywords

epidemics, forecasting, infected organism, infections, mathematical modeling, simulation modeling, susceptible organism

Abstract

The paper is devoted to an overview of the current state of research on the modeling of epidemic processes. The classification of mathematical and simulation models of epidemic processes is carried out. The disadvantages of classical models are revealed. Specific characteristics inherent in epidemic processes have been determined, which must be taken into account when constructing mathematical and simulation models. A review of deterministic compartment models is carried out. Various methods and approaches to the construction of statistical models of epidemic processes are considered. The types of problems that are solved using machine learning are analyzed.

https://doi.org/10.35339/ic.9.1.66-75
PDF

References

Brauer, F., & Castillo-Chavez, C. (2012). Mathematical Models in Population Biology and Epidemiology. In: Texts in Applied Mathematics, Vol. 40. New-York: Springer-Verlag. 508 p.

Galvani, A. P., & May R. M. (2005). Epidemiology: dimensions of superspreading. Nature, 438(7066), 293‒295.

Chumachenko, D. I., & Chumachenko, T. O. (2020). Mathematical models and methods of forecasting epidem-ic processes: a monograph. Kharkiv: Planeta-Print LLC. 180 p. doi: 10.25313/978-617-7751-88-4.

Kermack, W., & McKendrick, A. (1991). Contributions to the mathematical theory of epidemics – I. Bulletin of Mathematical Biology, 53, 33‒55. doi: 10.1007/BF02464423.

Kermack, W., & McKendrick, A. (1991). Contributions to the mathematical theory of epidemics – II. The prob-lem of endemicity. Bulletin of Mathematical Biology, 53, 57‒87. doi: 10.1007/BF02464424.

Kermack, W., & McKendrick, A. (1991). Contributions to the mathematical theory of epidemics – III. Further studies of the problem of endemicity. Bulletin of Mathematical Biology, 53, 89‒118. doi: 10.1007/BF02464425.

Ross, R. (1929). On some peculiar pigmented cells found in two mosquitoes fed on Malarial blood. BMJ, 2, 1986‒1788.

Baroyan, O. V., & Rvachev L. A. (1977). Mathematics and Epidemiology. M.: «Znaniye» ["Knowledge"]. 64 p.

Baroyan, O. V., & Rvachev L. A. (1967). Deterministic models of epidemics for a territory with a transport network. Cybernetics, 3, 55‒61. doi: 10.1007/BF01120008.

Tolles, J., & Luong, T. (2020). Modeling Epidemics with Compartmental Models. Journal of American Medi-cal Association, 323(24), 2515–2516. doi: 10.1001/jama.2020.8420.

Trawicki, M. B. (2017). Deterministic SEIRS epidemic model for modeling vital dynamics, vaccinations, and temporary immunity. Mathematics, 5(7), 1‒19. doi: 10.3390/math5010007.

Dashtbali, M., & Mirzaie, M. (2021). A compartmental model that predicts the effect of social distancing and vaccination on controlling COVID-19. Scientific Reports. 11. 8191. doi: 10.1038/s41598-021-86873-0.

Wang, T., Wu, Y., Yiu-Nam Lau, J., Yu, Y., Liu, L., Li, J., … & Jiang B. (2020). A four-compartment model for the COVID-19 infection – implications on infection kinetics, control measures, and lockdown exit strategies. Preci-sion Clinical Medicine, 3(2), 104–112. doi: 10.1093/pcmedi/pbaa018.

Ghostine, R. Gharamti, M., Hassrouny, S., & Hoteit, I. (2021). An extended SEIR model with vaccination for forecasting the COVID-19 pandemic in Saudi Arabia using an ensemble Kalman filter. Mathematics, 9, 636. doi: 10.3390/math9060636.

Miller, J. C., Slim, A. C., & Volz, E. M. (2012). Edge-based compartmental modelling for infectious disease spread. Journal of Royal Society Interface, 9, 890‒906. doi: 10.1098/rsif.2011.0403.

Gounane, S., Barkouch, Y., Atlas, A., Bendahmane, M., Karami, F., & Meskine, D. (2021). An adaptive social distancing SIR model for COVID-19 disease spreading and forecasting. Epidemiologic Methods, 10(S1), 20200044. doi: 10.1515/em-2020-0044.

Romezani, S. B. Rahimi, S., Amirlatifi, A., Hudnall, M., Pete, J., Parrish, A., … & Qian X. (2021). Empow-ering compartmental modeling with mobility and Shelter-in-Place analysis. Frontiers in Future Transportation, 2, 646751. doi: 10.3389/ffutr.2021.646751.

Trebeit, S., Brunner, H., & Ehrhardt, M. (2019). Compartment models for vaccine effectiveness and non-specific effects for Tuberculosis. Mathematical Biosciences and Engineering, 16(6). 7250‒7298. doi: 10.3934/mbe.2019364.

Avey, C., Bossert, W., Clark, A., Ellison, G., & Ellison, A. F. (2020). An Economists’s guide to epidemiolo-gy models of infectious disease. The Journal of Economic Perspectives, 34(4), 79‒104.

Mohammadi, A., Chumachenko, T., Makhota, L., & Chumachenko, D. (2021). Compartment model of COVID-19 epidemic process in Ukraine. CEUR Workshop Proceedings, 2824, 100‒109.

Mohammadi, A., Meniailov, I., Bazilevych, K., Yakovlev, S., & Chumachenko, D. (2021). Comparative study of linear regression and SIR models of COVID-19 propagation in Ukraine before vaccination. Radioelectronic and Computer Systems, 99(3), 5‒18. doi: 10.32620/reks.2021.3.01.

Roberts, M., Andreasen, V., Lloyd, A., & Pellis, L. (2015). Nine challenges for deterministic epidemic models. Epidemics, 10, 49-53. doi: 10.1016/j.epidem.2014.09.006.

Roosa, K., & Chowell, G. (2019). Assessing parameter identifiability in compartmental dynamic models using a computational approach: application to infectious disease transmission models. Theoretical Biology and Medical Modelling, 16, 1. doi: 10.1186/s12976-018-0097-6.

Deng, Q. (2020). Dynamics and development of the COVID-19 epidemic in the United States: a compartmental model enhanced with deep learning techniques. Journal of Medical Internet Research, 22(8), e21173. doi: 10.2196/21173.

Chumachenko, D. I., & Chumachenko, T. O. (2021). Simulation modeling of epidemic processes: applied as-pects: monograph. Kharkiv: Planet Print LLC.

Irhaif, N. H., Kareem, Z. I., Kareem Abdul, A. D., & Al-joboori, S. M. (2021). Using the moving average and exponentially weighted moving average with COVID-19. Periodicals of Engineering and Natural Sciences, 9(3), 625‒631. doi: 10.21533/pen.v9i3.2206.g907.

Lynch, C. J., Gore, R. (2021). Application of one-, three-, and seven-day forecasts during early onset on the COVID-19 epidemic dataset using moving average, autoregressive, autoregressive moving average, autoregressive inte-grated moving average, and naïve forecasting methods. Data in Brief, 35, 106759. doi: 10.1016/j.dib.2021.106759.

Khan, F., Ali, S., Saeed, A., Kumar, R., & Khan, A. W. (2021). Forecasting daily new infections, deaths and recovery cases due to COVID-19 in Pakistan by using Bayesian Dynamic Linear Models. PLoS One, 16(6), e0253367. doi: 10.1371/journal.pone.0253367.

Chu, J. (2021). A statistical analysis of the novel coronavirus (COVID-19) in Italy and Spain. PLoS One, 16(3), e0249037. doi: 10.1371/journal.pone.0249037.

He, Y., Wang, X., He, H., Zhai, J., Wang, B. (2020). Moving average based index for judging the peak of the COVID-19 epidemic. International Journal of Environmental Research and Public Health, 17(15), 5288. doi: 10.3390/ijerph17155288.

Syaharuddin, Negara H. R. P., Ibrahim, M., Ahmad, Zulfikiri M., Primajati G., … & Septyanun, N. (2021). Modify alpha value of EMA method and brown method: a data forecasting comparison of COVID-19 AIP Conference Proceedings, 2329(1), 060016. doi: 10.1063/5.0042120.

Buckingham-Jeffery, E., Morbey, R., House, T., Elliot, A. J., Harcourt, S., Smith, G. E. (2017). Correcting for day of the week and public holiday effects: improving a national daily syndromic surveillance service for detecting pub-lic health threats. BMC Public Health. 17. 477. doi: 10.1186/s12889-017-4372-y.

Steiner S.H., Grant K., Coory M., Kelly H.A. Detecting the start of an influenza outbreak using exponentially weighted moving average charts. (2010). BMC Medical Informatics and Decision Making. 10. 37. doi: 10.1186/1472-6947-10-37.

Dansana D., Kumar R., Adhikari J.D., Mohapatra M., Sharma R., Priyadarshini I., Le D.N. (2020). Global forecasting confirmed and fatal cases of COVID-19 outbreak using autoregressive integrated moving average model. Frontiers in Public Health. 8. 580327. doi: 10.3389/fpubh.2020.580327.

He Z., Tao H. (2018). Epidemiology and ARIMA model of positive-rate of influenza viruses among children in Wuhan, China: A nine-year retrospective study. International Journal of Infectious Diseases. 74. 61-70. doi: 10.1016/ j.ijid.2018.07.003.

Jerónimo-Martínez L.E. Menéndez-Mora R.E., Bolívar H. (2017). Forecasting acute respiratory infection cases in Southern Bogota: EARS vs. ARIMA and SARIMA. Congreso Internacional de Innovacion y Tendencias en Inge-nieria (CONIITI). 1-6. doi: 10.1109/CONIITI.2017.8273326.

Martinez E.Z., Silva E.A. (2011). Predicting the number of cases of dengue infection in Ribeirão Preto, São Paulo State, Brazil, using a SARIMA model. Cadernos de Saude Publica. 27 (9). 1809-18. doi: 10.1590/s0102-311x2011000900014.

Lau K., Dorigatti I., Miraldo M., Hauck K. (2021). SARIMA-modelled greater severity and mortality during the 2010/11 post-pandemic influenza season compared to the 2009 H1N1 pandemic in English hospitals. International Journal of Infectious Diseases. 105. 161-171. doi: 10.1016/j.ijid.2021.01.070

Gao J., Li J., Wang M. (2020). Time series analysis of cumulative incidences of typhoid and paratyphoid fevers in China using both Grey and SARIMA models. PLoS One. 15 (10). e0241217. doi: 10.1371/journal.pone.0241217

Britton T., Giardina F. (2016). Introduction to statistical inference for infectious diseases. Journal de la Societe Francaise de Statistique, 157(1), 53-70.

Riley, S., Fraser, C., Donnelly, C. A., Ghani, A. C., Abu-Raddad, L. J., Hedley, A. J., … & Anderson, R. M. (2003). Transmission dynamics if the etiological agent of SARS in Hong Kong: impact of public health interventions. Science, 300(5627), 1961‒1966. doi: 10.1126/science.1086478.

Yu, P. L. H., Chan, J. S. K., & Fung, W. K. (2006). Statistical exploration from SARS. The American Statis-tician, 60(1), 81‒91. doi: 10.1198/000313006X91421.

Goldstein, E., Cobey, S., Takahashi, S., Miller, J. C., & Lipsitch, M. (2011). Predicting the Epidemic Sizes of Influenza A/H1N1, A/H3N2, and B: A Statistical Method. PLoS Medicine, 8(7), e1001051. doi: 10.1371/ jour-nal.pmed.1001051.

Dawood, F. S., Iuliano, A. D., Reed, C., Meltzer, M. I., Shay, D. K., Cheng, P.-Y., … & Widdowson M.-A. (2012). Estimated global mortality associated with the first 12 months of 2009 pandemic influenza A H1N1 virus cir-culation: a modelling study. The Lancet. Infectious Diseases, 12(9), 687‒695. doi: 10.1016/S1473-3099(12)70121-4.

Khaleque, A., Sen, P. (2017). An empirical analysis of the Ebola outbreak in West Africa. Scientific Reports, 7, 42594. doi: 10.1038/srep42594.

Ferguson, N. M., Donnelly, C. A., & Anderson, R. M. (2001). The foot-and-mouth epidemic in Great Britain: pattern of spread and impact of interventions. Science, 292(5519), 1155–1160. doi: 10.1126/science.1061020.

Boschi, T., Lorio, J. Di., Testa, L., Cremona, M.A., & Chiaromonte, F. (2021). Functional data analysis char-acterizes the shapes of the first COVID-19 epidemic wave in Italy. Scientific Reports, 11, 17054. doi: 10.1038/s41598-021-95866-y.

Salg, G. A., Ganten, M. K., Bucher, A. M., Kenngott H. G., Fink M. A., Seibold, C., … & Kleesiek, J. (2021). A reporting and analysis framework for structured evaluation of COVID-19 clinical and imaging data. npj Digi-tal Medicine, 4, 69. doi: 10.1038/s41746-021-00439-y.

Imai, C., Armstrong, B., Chalabi, Z., Mangtani, P., & Hasizume, M. Time series regression model for infec-tious disease and weather. (2015). Environmental Research, 142, 319‒327. doi: 10.1016/j.envres.2015.06.040.

Bakuli, A., Klawonn, F., Karch, A., & Mikolajczyk, R. (2017). Effects of pathogen dependency in a multi-pathogen infectious disease system including population level heterogeneity – a simulation study. Theoretical Biology and Medical Modelling, 14(26), 1‒17 p. doi: 10.1186/s12976-017-0072-7.

Daniyal, M., Ogundokun, R. O., Abid, K., Khan, M. D., & Ogundokun, O. E. (2020). Predictive modeling of COVID-19 death cases in Pakistan. Infectious Disease Modelling, 5, 897‒904. doi: 10.1016/j.idm.2020.10.011.

Mokhort, H. (2020). Multiple linear regression model of Meningococcal disease in Ukraine: 1992‒2015. Com-putational and Mathematical Methods in Medicine, ID 5105120. doi: 10.1155/2020/5105120.

Mohammadi, A., Chumachenko, D., & Chumachenko, T. (2021). Machine Learning Model of COVID-19 Fore-casting in Ukraine Based on the Linear Regression. IEEE 12th International Conference on Electronics and Infor-mation Technologies (ELIT), 149-153. doi: 10.1109/ELIT53502.2021.9501122.

Hong, Z. (2020). Prediction of 2019-nCoV epidemic by linear regression. ISAIMS 2020: Proceedings of the 2020 International Symposium on Artificial Intelligence in Medical Sciences, 1‒5. doi: 10.1145/3429889.3429890.

Kartono, A., Wahyudi, S. T., Setiawan, A. A., & Sofian, I. (2021). Predicting of the Coronavirus Disease 2019 (COVID-19) Epidemic Using Estimation of Parameters in the Logistic Growth Model. Infectious Disease Reports, 13, 465–485. doi: 10.3390/idr13020046.

Kapusta, D., Mohammadi, A., & Chumachenko, D. (2021). Machine learning approach to COVID-19 epidemic process simulation using polynomial regression model. CEUR Workshop Proceedings, 3003, 83‒91.

Saqib, M. (2021). Forecasting COVID-19 outbreak progression using hybrid polynomial-Bayesian ridge regres-sion model. Applied Intelligence, 51, 2703–2713. doi: 10.1007/s10489-020-01942-7.

Chen, Y., Chu, C. W., Chen, M. I. C., & Cook, A. R. (2018). The utility of LASSO-based models for real time forecasts of endemic infectious diseases: A cross country comparison. Journal of Biomedical Informatics, 81, 16‒30. doi: 10.1016/j.jbi.2018.02.014

Jin, M., Lin, Y. (2021). Classification of asymptotic behavior in a stochastic SEIR epidemic model. Applied Mathematics Letters, 118, 107184. doi: 10.1016/j.aml.2021.107184.

Polyakov, P., Souty, C., Böelle, P. Y., & Breban, R. (2019). Classification of Spatiotemporal Data for Epi-demic Alert Systems: Monitoring Influenza-Like Illness in France. American Journal of Epidemiology, 188(4), 724–733. doi: 10.1093/aje/kwy254.

Alessa, A., & Faezipour, M. (2019). Preliminary flu outbreak prediction using Twitter posts classification and linear regression with historical Centers for Disease Control and Prevention Reports: prediction framework study JMIR Public Health and Surveillance. 5 (2). e12383. doi: 10.2196/12383.

Yang, X., Liu, D., He, J., Gou, F., Liu, H., Zheng, Y., … & Liu, X. (2019). Classification and regression tree model study on correlation between influenza epidemic and meteorological factors in different areas of Gansu, 2010 to 2016. Disease Surveillance, 34(5), 440‒445. doi: 10.3784/j.issn.1003-9961.2019.05.015.

Li, F., Shen, Y., Lv, D., Lin, J., Liu, B., He, F., & Wang, Z. (2020). A Bayesian classification model for dis-criminating common infectious diseases in Zhejiang province, China. Medicine, 99(8), e19218. doi: 10.1097/MD.0000000000019218.

Bazilevych, K. O., Menyaylov, Ye. S., & Chumachenko, D. I. (2021). Isolation of areas of COVID-19 coronavirus prevalence based on cluster analysis methods. The current state of research and technology in industry, 1(15), 5–13. doi: 10.30837/ITSSI.2021.15.005.

Jung, S., Moon, J., & Hwang, E. (2020). Cluster-based analysis of infectious disease occurrences using tensor decomposition: a case study of South Korea. International Journal of Environmental Research and Public Health, 17, 4872. doi: 10.3390/ijerph17134872.

Hamid, J. S., Meaney, C., Crowcroft, N. S., Granerod, J., & Beyene, J. (2010). Cluster analysis for identifying sub-groups and selecting potential discriminatory variables in human encephalitis. BMC Infectious Diseases, 10, 364. doi: 10.1186/1471-2334-10-364.

Mehta, S. R., Little, S. J. (2021). Phylogenetic cluster analysis: persons with undiagnosed infection drive Hu-man Immunodeficiency Virus transmission in a population with high levels of virologic suppression. Clinical Infec-tious Diseases, 72(12), 2184–2186. doi: 10.1093/cid/ciaa401.

Ismayilova, R., Nasirova, E., Hanou, C., Rivard, R. G., & Bautista, C. T. (2014). Patterns of Brucellosis in-fection symptoms in Azerbaijan: a latent class cluster analysis. Journal of Tropical Medicine, 2014, ID 593873. doi: 10.1155/2014/593873.

Frasca, M., Rizzo, A., Gallo, L., Fortuna, L., & Porfiri, M. (2015). Dimensionality reduction in epidemic spreading models. EPL Europhysics Letters, 111(6), 68006. doi: 10.1209/0295-5075/111/68006

Tu, C., D’Odorico, P., & Suweis, S. (2021). Dimensionality reduction of complex dynamical systems. iSci-ence, 24(1), 101912. doi: 10.1016/j.isci.2020.101912.

Abellana, D. P. (2021). Modelling the interdependent relationships among epidemic antecedents using fuzzy multiple attribute decision making approaches. Open Computer Science, 11(1), 305-329. doi: 10.1515/comp-2020-0213.

Yao, Z., Peng, Y., Bi, J., Xie, C., Chen, X., Ki, Y., … & Zhou J. (2015). Application of the multifactor di-mensionality reduction method in evaluation of the roles of multiple genes/enzymes in multidrug-resistant acquisition in Pseudomonas aeruginosa strains. Epidemiology and Infection, 144(4), 856‒863. doi: 10.1017/S0950268815001788.

Chumachenko, D., Chumachenko, T., Meniailov, I., Pyrohov, P., Kuzin, I., & Rodyna, R. (2020). On-Line Data Processing, Simulation and Forecasting of the Coronavirus Disease (COVID-19) Propagation in Ukraine Based on Machine Learning Approach. Communications in Computer and Information Sciences, 1158, 372‒382. doi: 10.1007/978-3-030-61656-4_25.

Jombart, T. (2021). Real-time monitoring of COVID-19 dynamics using automated trend fitting and anomaly detection. Philosophical Transactions of the Royal Society B, 376(1829). 20200266. doi: 10.1098/rstb.2020.0266.

Homayouni, H., Ray, I., Ghosh, S., Gondalia, S., & Kahn, M. G. (2021). Anomaly Detection in COVID-19 Time-Series Data. SN Computer Science, 2, 279. doi: 10.1007/s42979-021-00658-w.

Chowell, G., Luo, R., Sun, K., Roosa, K., Tariq, A., & Viboud, C. (2020). Real-time forecasting of epidemic trajectories using computational dynamic ensembles. Epidemics, 30, 100379. doi: 10.1016/j.epidem.2019.100379.

Marzouk, M., Elshaboury, N., Abdel-Latif, A., & Azab, S. (2021). Deep learning model for forecasting COVID-19 outbreak in Egypt. Process Safety and Environmental Protection, 153, 363‒375. doi: 10.1016/j.psep.2021.07.034.

Nikparvar, B., Rahman, M. M., Hatami, F., & Thill, J. C. (2021). Spatio-temporal prediction of the COVID-19 pandemic in US counties: modeling with a deep LSTM neural network. Scientific Reports, 11, 21715. doi: 10.1038/s41598-021-01119-3.

Alessa, A., & Faezipour, M. (2018). A review of influenza detection and prediction through social networking sites. Theoretical Biology and Medical Modeling, 15, 2. doi: 10.1186/s12976-017-0074-5

Wong, A., Cao, J., Lyons, P. G., Dutta, S., Major, V. J., Otles, & E., Singh, K. (2021). Quantification of Sepsis model alerts in 24 US hospitals before and during the COVID-19 pandemic. JAMA Network Open, 4(11), e2135296. doi: 10.1001/jamanetworkopen.2021.35286.

Rustam, F., Khalid, M., Aslam, W., Rupapara, V., Mehmood, A., & Choi, G.S. (2021). A performance com-parison of supervised machine learning models for Covid-19 tweets sentiment analysis. PLoS ONE, 16(2), e0245909. doi: 10.1371/journal.pone.0245909.

Amara, A., Taieb, M. A. H., & Aouicha, M. B. (2021). Multilingual topic modeling for tracking COVID-19 trends based on Facebook data analysis. Applied Intelligence, 51, 3052‒3073. doi: 10.1007/s10489-020-02033-3.

Prasanth, S., Singh, U., Kumar, A., Tikkiwal, V. A., & Chong, P. H. J. (2021). Forecasting spread of COVID-19 using Google Trends: a hybrid GWO-deep learning approach. Chaos Solutions Fractals, 142, 110336. doi: 10.1016/j.chaos.2020.110336.

Bengtsson, L., Gaudart, J., Lu, X., Moore, S., Wetter, E., Sallah, K., … Piarroux, R. (2015). Using Mobile Phone Data to Predict the Spatial Spread of Cholera. Scientific Reports, 5, 8923. doi: 10.1038/srep08923

Yakovlev, S. (2020). The concept of developing a decision support system for the epidemic morbidity control. CEUR Workshop Proceedings, 2753, 265–274.

Copyright for articles published in the journal is regulated by the License Agreement for the use of a scientific article in the journal, which is concluded between the author of the article (Licensor) and Kharkov National Medical University (Licensee, publisher of the journal "Inter Collegas"). The licensor grants to the Licensee a non-exclusive non-exclusive license for the use of the article (a license that does not exclude the use of the article by the Licensor and the issuance of licenses to others for use of this article) on the terms and for the period specified in the contract. The licensor (the author of the article) grants the Licensee the right to reproduce the article (publication in the journal "Inter Collegas", publication, duplication, duplication or other reproduction of the article without limiting the circulation of copies, each copy of the article must contain the name of the Licensor; Of general information, including the publication of the article in full or in part on the Internet on the journal page, the right to use the metadata of the article (titles, full names of authors, annotations, bibliography eskih materials) through the dissemination and communication to the public, processing and systematization, as well as inclusion in various databases and in-formational system).

The licensor grants the licensee the right to transfer, store and process his personal data (full name, scientific degree, academic title, place of work and position, contact information of the authors) with the purpose of including them in the database in accordance with the Law of Ukraine No. 2297 - VI "on protection of personal data" from 01.06.2010.

Personal data and metadata of the article are provided for their storage and processing in various databases and information systems, including them in analytical and statistical reporting, creating sound relationships between the objects of works of science, literature and art with personal data, etc. on unlimited territory. The licensee has the right to transfer the specified data for processing and storage to third parties provided that such a fact is notified with the provision of information about the third party (name and address) to the Licensor.