Abstract
Background. Despite numerous studies, the pathogenesis of gastroesophageal reflux disease remains unclear.
Aim of research: assessment the activity of antioxidant defense system in young patients with GERD based on expression of biomarker associated with mitochondrial function.
Material and methods. The study included 45 patients with gastroesophageal reflux disease. The examined contingent was presented by students age from 18 to 25 years. 20 healthy persons were included as control group. Levels of manganese superoxide dismutase were determined in blood serum of study persons with enzyme immunoassays (ELISA, Elabscience, USA). Statistical data processing by the Statistica Basic Academic 13 for Windows En local was made.
Results. Gastroesophageal reflux disease in young patients is characterized by significantly increasing of manganese superoxide dismutase as compare to control group (7.1700 ng/ml vs 4.4720 ng/ml respectively, p<0.01). Presence of erosion in esophagus mucous doesn't accompanied by significant changes of evaluated parameter as compare with non-erosion form of disease in patients.
Conclusion. The elevation in young patients with GERD the biomarker of mitohondrial antioxidant defense system we may speculate as adaptive response contributing to non-specific citoprotection. Taking to account the publishing facts about dual role of manganese superoxide dismutase it is necessary to monitoring antioxidant enzyme in patients with gastroesophageal reflux disease for prediction of possible complications and outcome.
References
Altomare, A., Guarino, M. P., Cocca, S., Emerenziani, S., & Cicala, M. (2013). Gastroesophagealreflux disease: Update on inflammation and symptom perception. World journal of gastroenterology, 19(39), 6523–6528. https://doi.org/10.3748/wjg.v19.i39.6523
El-Serag, H. B., Sweet, S., Winchester, C. C., & Dent, J. (2014). Update on the epidemiology ofgastro-oesophageal reflux disease: a systematic review. Gut, 63(6), 871–880. https://doi.org/10.1136/ gutjnl-2012-304269
Mudyanadzo, T. A. (2018). Barrett's Esophagus: A Molecular Overview. Cureus, 10(10), e3468. https://doi.org/10.7759/cureus.3468
Savarino, E., de Bortoli, N., De Cassan, C., Della Coletta, M., Bartolo, O., Furnari, M., Ottonello,A., Marabotto, E., Bodini, G., & Savarino, V. (2017). The natural history of gastro-esophageal reflux disease: a comprehensive review. Diseases of the esophagus: official journal of the International Society for Diseases of the Esophagus, 30(2), 1–9. https://doi.org/10.1111/dote.12511
Yoshida, N., Imamura, Y., Baba, Y., & Hideo B. (2016). Pathogenesis of acute gastroesophagealreflux disease might be changing. Transl Cancer Res. 5(4), 645–647. https://doi.org/10.21037/ tcr.2016.10.57
Hussain, T., Tan, B., Yin, Y., Blachier, F., Tossou, M. C., & Rahu, N. (2016). Oxidative Stress andInflammation: What Polyphenols Can Do for Us? Oxidative medicine and cellular longevity, 2016, 7432797. https://doi.org/10.1155/2016/7432797
Birben, E., Sahiner, U. M., Sackesen, C., Erzurum, S., & Kalayci, O. (2012). Oxidative stress andantioxidant defense. The World Allergy Organization journal, 5(1), 9–19. https://doi.org/10.1097/WOX.0b013e3182439613
Gupta, R. K., Patel, A. K., Shah, N., Chaudhary, A. K., Jha, U. K., Yadav, U. C., Gupta, P. K., &Pakuwal, U. (2014). Oxidative stress and antioxidants in disease and cancer: a review. Asian Pacific journal of cancer prevention: APJCP, 15(11), 4405–4409. https://doi.org/10.7314/apjcp.2014.15.11.4405
Matsui, H., Nagano, Y., Shimokawa, O., Kaneko, T., Rai, K., Udo, J., Hirayama, A., Nakamura, Y.,Indo, H. P., Majima, H. J., & Hyodo, I. (2011). Gastric acid induces mitochondrial superoxide production and lipid peroxidation in gastric epithelial cells. Journal of gastroenterology, 46(10), 1167–1176. https://doi.org/10.1007/s00535-011-0434-6
Miriyala, S., Holley, A. K., & St Clair, D. K. (2011). Mitochondrial superoxide dismutase-signalsof distinction. Anti-cancer agents in medicinal chemistry, 11(2), 181–190. https://doi.org/10.2174/187152011795255920
Chandra, M., Panchatcharam, M., & Miriyala, S. (2015). Manganese superoxide dismutase: guardian of the heart dysfunction. MOJ Anat Physiol, 1(2), 27–28. https://doi.org/10.15406/mojap.2015.01.000
Ansenberger-Fricano, K., Ganini, D., Mao, M., Chatterjee, S., Dallas, S., Mason, R. P., Stadler,K., Santos, J. H., & Bonini, M. G. (2013). The peroxidase activity of mitochondrial superoxide dismutase. Free radical biology & medicine, 54, 116–124. https://doi.org/10.1016/j.freeradbiomed.2012.08.573
Ekoue, D. N., He, C., Diamond, A. M., & Bonini, M. G. (2017). Manganese superoxide dismutaseand glutathione peroxidase-1 contribute to the rise and fall of mitochondrial reactive oxygen species which drive oncogenesis. Biochimica et biophysica acta. Bioenergetics, 1858(8), 628–632. https://doi.org/ 10.1016/j.bbabio.2017.01.006
Zuo, J., Zhao, M., Liu, B., Han, X., Li, Y., Wang, W., Zhang, Q., Lv, P., Xing, L., Shen, H., & Zhang, X. (2019). TTNF‑α‑mediated upregulation of SOD‑2 contributes to cell proliferation and cisplatin resistance in esophageal squamous cell carcinoma. Oncology reports, 42(4), 1497–1506. https://doi.org/10.3892/or.2019.7252
Li, J., Liu, Y., & Liu, Q. (2020). Expression of superoxide dismutase 2 in breast cancer and itsclinical significance. Journal of Southern Medical University, 2020 40(8), 1103–1111. https://doi.org/10.12122/j.issn.1673-4254.2020.08.06
"Inter Collegas" is an open access journal: all articles are published in open access without an embargo period, under the terms of the CC BY-NC-SA (Creative Commons Attribution ‒ Noncommercial ‒ Share Alike) license; the content is available to all readers without registration from the moment of its publication. Electronic copies of the archive of journals are placed in the repositories of the KhNMU and V.I. Vernadsky National Library of Ukraine.